A memory disclosure vulnerability was found in PostgreSQL that allows remote users to access sensitive information by exploiting certain aggregate function calls with 'unknown'-type arguments. Handling 'unknown'-type values from string literals without type designation can disclose bytes, potentially revealing notable and confidential information. This issue exists due to excessive data output in aggregate function calls, enabling remote users to read some portion of system memory.
A flaw was found in PostgreSQL that allows authenticated database users to execute arbitrary code through missing overflow checks during SQL array value modification. This issue exists due to an integer overflow during array modification where a remote user can trigger the overflow by providing specially crafted data. This enables the execution of arbitrary code on the target system, allowing users to write arbitrary bytes to memory and extensively read the server's memory.
A flaw was found in PostgreSQL involving the pg_cancel_backend role that signals background workers, including the logical replication launcher, autovacuum workers, and the autovacuum launcher. Successful exploitation requires a non-core extension with a less-resilient background worker and would affect that specific background worker only. This issue may allow a remote high privileged user to launch a denial of service (DoS) attack.
When the server is configured to use trust authentication with a clientcert requirement or to use cert authentication, a man-in-the-middle attacker can inject arbitrary SQL queries when a connection is first established, despite the use of SSL certificate verification and encryption.
A flaw was found in postgresql. A purpose-crafted query can read arbitrary bytes of server memory. In the default configuration, any authenticated database user can complete this attack at will. The attack does not require the ability to create objects. If server settings include max_worker_processes=0, the known versions of this attack are infeasible. However, undiscovered variants of the attack may be independent of that setting.
Apache HTTP Server versions 2.4.20 to 2.4.43. A specially crafted value for the 'Cache-Digest' header in a HTTP/2 request would result in a crash when the server actually tries to HTTP/2 PUSH a resource afterwards. Configuring the HTTP/2 feature via "H2Push off" will mitigate this vulnerability for unpatched servers.
An untrusted deserialization was found in the org.apache.xmlrpc.parser.XmlRpcResponseParser:addResult method of Apache XML-RPC (aka ws-xmlrpc) library. A malicious XML-RPC server could target a XML-RPC client causing it to execute arbitrary code. Apache XML-RPC is no longer maintained and this issue will not be fixed.
In PHP versions 7.1.x below 7.1.33, 7.2.x below 7.2.24 and 7.3.x below 7.3.11 in certain configurations of FPM setup it is possible to cause FPM module to write past allocated buffers into the space reserved for FCGI protocol data, thus opening the possibility of remote code execution.