The HTTPS protocol, as used in unspecified web applications, can encrypt compressed data without properly obfuscating the length of the unencrypted data, which makes it easier for man-in-the-middle attackers to obtain plaintext secret values by observing length differences during a series of guesses in which a string in an HTTP request URL potentially matches an unknown string in an HTTP response body, aka a "BREACH" attack, a different issue than CVE-2012-4929.
Through undisclosed methods, on F5 BIG-IP 13.0.0-13.1.0.7, 12.1.0-12.1.3.5, 11.6.0-11.6.3.1, or 11.2.1-11.5.6, adjacent network attackers can cause a denial of service for VCMP guest and host systems. Attack must be sourced from adjacent network (layer 2).
A remote attacker may be able to disrupt services on F5 BIG-IP 13.0.0-13.1.0.5, 12.1.0-12.1.3.5, 11.6.0-11.6.3.1, or 11.2.1-11.5.6 if the TMM virtual server is configured with a HTML or a Rewrite profile. TMM may restart while processing some specially prepared HTML content from the back end.
On F5 BIG-IP 13.0.0, 12.1.0-12.1.2, 11.6.0-11.6.3.1, or 11.2.1-11.5.6 a domain name cached within the DNS Cache of TMM may continue to be resolved by the cache even after the parent server revokes the record, if the DNS Cache is receiving a stream of requests for the cached name.
SSL virtual servers in F5 BIG-IP systems 10.x before 10.2.4 HF9, 11.x before 11.2.1 HF12, 11.3.0 before HF10, 11.4.0 before HF8, 11.4.1 before HF5, 11.5.0 before HF5, and 11.5.1 before HF5, when used with third-party Secure Sockets Layer (SSL) accelerator cards, might allow remote attackers to have unspecified impact via a timing side-channel attack.
Buffer overflow in the mcpq daemon in F5 BIG-IP systems 10.x before 10.2.4 HF12, 11.x before 11.2.1 HF15, 11.3.x, 11.4.x before 11.4.1 HF9, 11.5.x before 11.5.2 HF1, and 11.6.0 before HF4, and Enterprise Manager 2.1.0 through 2.3.0 and 3.x before 3.1.1 HF5 allows remote authenticated administrators to cause a denial of service via unspecified vectors.
Memory leak in the last hop kernel module in F5 BIG-IP LTM, GTM, and Link Controller 10.1.x, 10.2.x before 10.2.4 HF13, 11.x before 11.2.1 HF15, 11.3.x, 11.4.x, 11.5.x before 11.5.3 HF2, and 11.6.x before HF6, BIG-IP AAM 11.4.x, 11.5.x before 11.5.3 HF2 and 11.6.0 before HF6, BIG-IP AFM and PEM 11.3.x, 11.4.x, 11.5.x before 11.5.3 HF2, and 11.6.0 before HF6, BIG-IP Analytics 11.x before 11.2.1 HF15, 11.3.x, 11.4.x, 11.5.x before 11.5.3 HF2, and 11.6.0 before HF6, BIG-IP APM and ASM 10.1.0 through 10.2.4, 11.x before 11.2.1 HF15, 11.3.x, 11.4.x, 11.5.x before 11.5.3 HF2, and 11.6.0 before HF6, BIG-IP Edge Gateway, WebAccelerator, and WOM 10.1.x, 10.2.x before 10.2.4 HF13, 11.x before 11.2.1 HF15, and 11.3.0, BIG-IP PSM 10.1.x, 10.2.x before 10.2.4 HF13, 11.x before 11.2.1 HF15, 11.3.x, and 11.4.x before 11.4.1 HF, Enterprise Manager 3.0.0 through 3.1.1, BIG-IQ Cloud and Security 4.0.0 through 4.5.0, BIG-IQ Device 4.2.0 through 4.5.0, and BIG-IQ ADC 4.5.0 might allow remote attackers to cause a denial of service (memory consumption) via a large number of crafted UDP packets.
Directory traversal vulnerability in the configuration utility in F5 BIG-IP before 12.0.0 and Enterprise Manager 3.0.0 through 3.1.1 allows remote authenticated users to access arbitrary files in the web root via unspecified vectors.
Cross-site scripting (XSS) vulnerability in F5 BIG-IP Application Security Manager (ASM) before 11.6 allows remote attackers to inject arbitrary web script or HTML via the Response Body field when creating a new user account.
The SSL profiles component in F5 BIG-IP LTM, APM, and ASM 10.0.0 through 10.2.4 and 11.0.0 through 11.5.1, AAM 11.4.0 through 11.5.1, AFM 11.3.0 through 11.5.1, Analytics 11.0.0 through 11.5.1, Edge Gateway, WebAccelerator, and WOM 10.1.0 through 10.2.4 and 11.0.0 through 11.3.0, PEM 11.3.0 through 11.6.0, and PSM 10.0.0 through 10.2.4 and 11.0.0 through 11.4.1 and BIG-IQ Cloud and Security 4.0.0 through 4.4.0 and Device 4.2.0 through 4.4.0, when using TLS 1.x before TLS 1.2, does not properly check CBC padding bytes when terminating connections, which makes it easier for man-in-the-middle attackers to obtain cleartext data via a padding-oracle attack, a variant of CVE-2014-3566 (aka POODLE). NOTE: the scope of this identifier is limited to the F5 implementation only. Other vulnerable implementations should receive their own CVE ID, since this is not a vulnerability within the design of TLS 1.x itself.