In the Linux kernel, the following vulnerability has been resolved:
powerpc/rtas: avoid scheduling in rtas_os_term()
It's unsafe to use rtas_busy_delay() to handle a busy status from
the ibm,os-term RTAS function in rtas_os_term():
Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
BUG: sleeping function called from invalid context at arch/powerpc/kernel/rtas.c:618
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
preempt_count: 2, expected: 0
CPU: 7 PID: 1 Comm: swapper/0 Tainted: G D 6.0.0-rc5-02182-gf8553a572277-dirty #9
Call Trace:
[c000000007b8f000] [c000000001337110] dump_stack_lvl+0xb4/0x110 (unreliable)
[c000000007b8f040] [c0000000002440e4] __might_resched+0x394/0x3c0
[c000000007b8f0e0] [c00000000004f680] rtas_busy_delay+0x120/0x1b0
[c000000007b8f100] [c000000000052d04] rtas_os_term+0xb8/0xf4
[c000000007b8f180] [c0000000001150fc] pseries_panic+0x50/0x68
[c000000007b8f1f0] [c000000000036354] ppc_panic_platform_handler+0x34/0x50
[c000000007b8f210] [c0000000002303c4] notifier_call_chain+0xd4/0x1c0
[c000000007b8f2b0] [c0000000002306cc] atomic_notifier_call_chain+0xac/0x1c0
[c000000007b8f2f0] [c0000000001d62b8] panic+0x228/0x4d0
[c000000007b8f390] [c0000000001e573c] do_exit+0x140c/0x1420
[c000000007b8f480] [c0000000001e586c] make_task_dead+0xdc/0x200
Use rtas_busy_delay_time() instead, which signals without side effects
whether to attempt the ibm,os-term RTAS call again.
In the Linux kernel, the following vulnerability has been resolved:
binfmt_misc: fix shift-out-of-bounds in check_special_flags
UBSAN reported a shift-out-of-bounds warning:
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x8d/0xcf lib/dump_stack.c:106
ubsan_epilogue+0xa/0x44 lib/ubsan.c:151
__ubsan_handle_shift_out_of_bounds+0x1e7/0x208 lib/ubsan.c:322
check_special_flags fs/binfmt_misc.c:241 [inline]
create_entry fs/binfmt_misc.c:456 [inline]
bm_register_write+0x9d3/0xa20 fs/binfmt_misc.c:654
vfs_write+0x11e/0x580 fs/read_write.c:582
ksys_write+0xcf/0x120 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x34/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x4194e1
Since the type of Node's flags is unsigned long, we should define these
macros with same type too.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential memory leaks
When the driver hits -ENOMEM at allocating a URB or a buffer, it
aborts and goes to the error path that releases the all previously
allocated resources. However, when -ENOMEM hits at the middle of the
sync EP URB allocation loop, the partially allocated URBs might be
left without released, because ep->nurbs is still zero at that point.
Fix it by setting ep->nurbs at first, so that the error handler loops
over the full URB list.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix shift-out-of-bounds/overflow in nilfs_sb2_bad_offset()
Patch series "nilfs2: fix UBSAN shift-out-of-bounds warnings on mount
time".
The first patch fixes a bug reported by syzbot, and the second one fixes
the remaining bug of the same kind. Although they are triggered by the
same super block data anomaly, I divided it into the above two because the
details of the issues and how to fix it are different.
Both are required to eliminate the shift-out-of-bounds issues at mount
time.
This patch (of 2):
If the block size exponent information written in an on-disk superblock is
corrupted, nilfs_sb2_bad_offset helper function can trigger
shift-out-of-bounds warning followed by a kernel panic (if panic_on_warn
is set):
shift exponent 38983 is too large for 64-bit type 'unsigned long long'
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:151 [inline]
__ubsan_handle_shift_out_of_bounds+0x33d/0x3b0 lib/ubsan.c:322
nilfs_sb2_bad_offset fs/nilfs2/the_nilfs.c:449 [inline]
nilfs_load_super_block+0xdf5/0xe00 fs/nilfs2/the_nilfs.c:523
init_nilfs+0xb7/0x7d0 fs/nilfs2/the_nilfs.c:577
nilfs_fill_super+0xb1/0x5d0 fs/nilfs2/super.c:1047
nilfs_mount+0x613/0x9b0 fs/nilfs2/super.c:1317
...
In addition, since nilfs_sb2_bad_offset() performs multiplication without
considering the upper bound, the computation may overflow if the disk
layout parameters are not normal.
This fixes these issues by inserting preliminary sanity checks for those
parameters and by converting the comparison from one involving
multiplication and left bit-shifting to one using division and right
bit-shifting.
In the Linux kernel, the following vulnerability has been resolved:
xen/gntdev: Accommodate VMA splitting
Prior to this commit, the gntdev driver code did not handle the
following scenario correctly with paravirtualized (PV) Xen domains:
* User process sets up a gntdev mapping composed of two grant mappings
(i.e., two pages shared by another Xen domain).
* User process munmap()s one of the pages.
* User process munmap()s the remaining page.
* User process exits.
In the scenario above, the user process would cause the kernel to log
the following messages in dmesg for the first munmap(), and the second
munmap() call would result in similar log messages:
BUG: Bad page map in process doublemap.test pte:... pmd:...
page:0000000057c97bff refcount:1 mapcount:-1 \
mapping:0000000000000000 index:0x0 pfn:...
...
page dumped because: bad pte
...
file:gntdev fault:0x0 mmap:gntdev_mmap [xen_gntdev] readpage:0x0
...
Call Trace:
<TASK>
dump_stack_lvl+0x46/0x5e
print_bad_pte.cold+0x66/0xb6
unmap_page_range+0x7e5/0xdc0
unmap_vmas+0x78/0xf0
unmap_region+0xa8/0x110
__do_munmap+0x1ea/0x4e0
__vm_munmap+0x75/0x120
__x64_sys_munmap+0x28/0x40
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x61/0xcb
...
For each munmap() call, the Xen hypervisor (if built with CONFIG_DEBUG)
would print out the following and trigger a general protection fault in
the affected Xen PV domain:
(XEN) d0v... Attempt to implicitly unmap d0's grant PTE ...
(XEN) d0v... Attempt to implicitly unmap d0's grant PTE ...
As of this writing, gntdev_grant_map structure's vma field (referred to
as map->vma below) is mainly used for checking the start and end
addresses of mappings. However, with split VMAs, these may change, and
there could be more than one VMA associated with a gntdev mapping.
Hence, remove the use of map->vma and rely on map->pages_vm_start for
the original start address and on (map->count << PAGE_SHIFT) for the
original mapping size. Let the invalidate() and find_special_page()
hooks use these.
Also, given that there can be multiple VMAs associated with a gntdev
mapping, move the "mmu_interval_notifier_remove(&map->notifier)" call to
the end of gntdev_put_map, so that the MMU notifier is only removed
after the closing of the last remaining VMA.
Finally, use an atomic to prevent inadvertent gntdev mapping re-use,
instead of using the map->live_grants atomic counter and/or the map->vma
pointer (the latter of which is now removed). This prevents the
userspace from mmap()'ing (with MAP_FIXED) a gntdev mapping over the
same address range as a previously set up gntdev mapping. This scenario
can be summarized with the following call-trace, which was valid prior
to this commit:
mmap
gntdev_mmap
mmap (repeat mmap with MAP_FIXED over the same address range)
gntdev_invalidate
unmap_grant_pages (sets 'being_removed' entries to true)
gnttab_unmap_refs_async
unmap_single_vma
gntdev_mmap (maps the shared pages again)
munmap
gntdev_invalidate
unmap_grant_pages
(no-op because 'being_removed' entries are true)
unmap_single_vma (For PV domains, Xen reports that a granted page
is being unmapped and triggers a general protection fault in the
affected domain, if Xen was built with CONFIG_DEBUG)
The fix for this last scenario could be worth its own commit, but we
opted for a single commit, because removing the gntdev_grant_map
structure's vma field requires guarding the entry to gntdev_mmap(), and
the live_grants atomic counter is not sufficient on its own to prevent
the mmap() over a pre-existing mapping.
In the Linux kernel, the following vulnerability has been resolved:
macintosh: fix possible memory leak in macio_add_one_device()
Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's
bus_id string array"), the name of device is allocated dynamically. It
needs to be freed when of_device_register() fails. Call put_device() to
give up the reference that's taken in device_initialize(), so that it
can be freed in kobject_cleanup() when the refcount hits 0.
macio device is freed in macio_release_dev(), so the kfree() can be
removed.
In the Linux kernel, the following vulnerability has been resolved:
xhci: Remove device endpoints from bandwidth list when freeing the device
Endpoints are normally deleted from the bandwidth list when they are
dropped, before the virt device is freed.
If xHC host is dying or being removed then the endpoints aren't dropped
cleanly due to functions returning early to avoid interacting with a
non-accessible host controller.
So check and delete endpoints that are still on the bandwidth list when
freeing the virt device.
Solves a list_del corruption kernel crash when unbinding xhci-pci,
caused by xhci_mem_cleanup() when it later tried to delete already freed
endpoints from the bandwidth list.
This only affects hosts that use software bandwidth checking, which
currenty is only the xHC in intel Panther Point PCH (Ivy Bridge)
In the Linux kernel, the following vulnerability has been resolved:
cnic: Fix use-after-free bugs in cnic_delete_task
The original code uses cancel_delayed_work() in cnic_cm_stop_bnx2x_hw(),
which does not guarantee that the delayed work item 'delete_task' has
fully completed if it was already running. Additionally, the delayed work
item is cyclic, the flush_workqueue() in cnic_cm_stop_bnx2x_hw() only
blocks and waits for work items that were already queued to the
workqueue prior to its invocation. Any work items submitted after
flush_workqueue() is called are not included in the set of tasks that the
flush operation awaits. This means that after the cyclic work items have
finished executing, a delayed work item may still exist in the workqueue.
This leads to use-after-free scenarios where the cnic_dev is deallocated
by cnic_free_dev(), while delete_task remains active and attempt to
dereference cnic_dev in cnic_delete_task().
A typical race condition is illustrated below:
CPU 0 (cleanup) | CPU 1 (delayed work callback)
cnic_netdev_event() |
cnic_stop_hw() | cnic_delete_task()
cnic_cm_stop_bnx2x_hw() | ...
cancel_delayed_work() | /* the queue_delayed_work()
flush_workqueue() | executes after flush_workqueue()*/
| queue_delayed_work()
cnic_free_dev(dev)//free | cnic_delete_task() //new instance
| dev = cp->dev; //use
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the cyclic delayed work item is properly canceled and that any
ongoing execution of the work item completes before the cnic_dev is
deallocated. Furthermore, since cancel_delayed_work_sync() uses
__flush_work(work, true) to synchronously wait for any currently
executing instance of the work item to finish, the flush_workqueue()
becomes redundant and should be removed.
This bug was identified through static analysis. To reproduce the issue
and validate the fix, I simulated the cnic PCI device in QEMU and
introduced intentional delays — such as inserting calls to ssleep()
within the cnic_delete_task() function — to increase the likelihood
of triggering the bug.
In the Linux kernel, the following vulnerability has been resolved:
dm-stripe: fix a possible integer overflow
There's a possible integer overflow in stripe_io_hints if we have too
large chunk size. Test if the overflow happened, and if it did, don't set
limits->io_min and limits->io_opt;
In the Linux kernel, the following vulnerability has been resolved:
udf: Do not bother merging very long extents
When merging very long extents we try to push as much length as possible
to the first extent. However this is unnecessarily complicated and not
really worth the trouble. Furthermore there was a bug in the logic
resulting in corrupting extents in the file as syzbot reproducer shows.
So just don't bother with the merging of extents that are too long
together.