Vulnerabilities
Vulnerable Software
Vllm:  >> Vllm  >> 0.8.0  Security Vulnerabilities
vLLM is an inference and serving engine for large language models (LLMs). In versions 0.8.0 up to but excluding 0.9.0, hitting the /v1/completions API with a invalid json_schema as a Guided Param kills the vllm server. This vulnerability is similar GHSA-9hcf-v7m4-6m2j/CVE-2025-48943, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue.
CVSS Score
6.5
EPSS Score
0.001
Published
2025-05-30
vLLM is an inference and serving engine for large language models (LLMs). Version 0.8.0 up to but excluding 0.9.0 have a Denial of Service (ReDoS) that causes the vLLM server to crash if an invalid regex was provided while using structured output. This vulnerability is similar to GHSA-6qc9-v4r8-22xg/CVE-2025-48942, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue.
CVSS Score
6.5
EPSS Score
0.001
Published
2025-05-30
vLLM is an inference and serving engine for large language models (LLMs). In version 0.8.0 up to but excluding 0.9.0, the vLLM backend used with the /v1/chat/completions OpenAPI endpoint fails to validate unexpected or malformed input in the "pattern" and "type" fields when the tools functionality is invoked. These inputs are not validated before being compiled or parsed, causing a crash of the inference worker with a single request. The worker will remain down until it is restarted. Version 0.9.0 fixes the issue.
CVSS Score
6.5
EPSS Score
0.001
Published
2025-05-30
vLLM, an inference and serving engine for large language models (LLMs), has a Regular Expression Denial of Service (ReDoS) vulnerability in the file `vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py` of versions 0.6.4 up to but excluding 0.9.0. The root cause is the use of a highly complex and nested regular expression for tool call detection, which can be exploited by an attacker to cause severe performance degradation or make the service unavailable. The pattern contains multiple nested quantifiers, optional groups, and inner repetitions which make it vulnerable to catastrophic backtracking. Version 0.9.0 contains a patch for the issue.
CVSS Score
6.5
EPSS Score
0.001
Published
2025-05-30
vLLM is an inference and serving engine for large language models (LLMs). Prior to version 0.9.0, when a new prompt is processed, if the PageAttention mechanism finds a matching prefix chunk, the prefill process speeds up, which is reflected in the TTFT (Time to First Token). These timing differences caused by matching chunks are significant enough to be recognized and exploited. This issue has been patched in version 0.9.0.
CVSS Score
2.6
EPSS Score
0.0
Published
2025-05-29
vLLM is an inference and serving engine for large language models (LLMs). In versions starting from 0.7.0 to before 0.9.0, in the file vllm/multimodal/hasher.py, the MultiModalHasher class has a security and data integrity issue in its image hashing method. Currently, it serializes PIL.Image.Image objects using only obj.tobytes(), which returns only the raw pixel data, without including metadata such as the image’s shape (width, height, mode). As a result, two images of different sizes (e.g., 30x100 and 100x30) with the same pixel byte sequence could generate the same hash value. This may lead to hash collisions, incorrect cache hits, and even data leakage or security risks. This issue has been patched in version 0.9.0.
CVSS Score
4.2
EPSS Score
0.001
Published
2025-05-29
vLLM, an inference and serving engine for large language models (LLMs), has an issue in versions 0.6.5 through 0.8.4 that ONLY impacts environments using the `PyNcclPipe` KV cache transfer integration with the V0 engine. No other configurations are affected. vLLM supports the use of the `PyNcclPipe` class to establish a peer-to-peer communication domain for data transmission between distributed nodes. The GPU-side KV-Cache transmission is implemented through the `PyNcclCommunicator` class, while CPU-side control message passing is handled via the `send_obj` and `recv_obj` methods on the CPU side.​ The intention was that this interface should only be exposed to a private network using the IP address specified by the `--kv-ip` CLI parameter. The vLLM documentation covers how this must be limited to a secured network. The default and intentional behavior from PyTorch is that the `TCPStore` interface listens on ALL interfaces, regardless of what IP address is provided. The IP address given was only used as a client-side address to use. vLLM was fixed to use a workaround to force the `TCPStore` instance to bind its socket to a specified private interface. As of version 0.8.5, vLLM limits the `TCPStore` socket to the private interface as configured.
CVSS Score
9.8
EPSS Score
0.002
Published
2025-05-20
vLLM is an inference and serving engine for large language models. In a multi-node vLLM deployment using the V0 engine, vLLM uses ZeroMQ for some multi-node communication purposes. The secondary vLLM hosts open a `SUB` ZeroMQ socket and connect to an `XPUB` socket on the primary vLLM host. When data is received on this `SUB` socket, it is deserialized with `pickle`. This is unsafe, as it can be abused to execute code on a remote machine. Since the vulnerability exists in a client that connects to the primary vLLM host, this vulnerability serves as an escalation point. If the primary vLLM host is compromised, this vulnerability could be used to compromise the rest of the hosts in the vLLM deployment. Attackers could also use other means to exploit the vulnerability without requiring access to the primary vLLM host. One example would be the use of ARP cache poisoning to redirect traffic to a malicious endpoint used to deliver a payload with arbitrary code to execute on the target machine. Note that this issue only affects the V0 engine, which has been off by default since v0.8.0. Further, the issue only applies to a deployment using tensor parallelism across multiple hosts, which we do not expect to be a common deployment pattern. Since V0 is has been off by default since v0.8.0 and the fix is fairly invasive, the maintainers of vLLM have decided not to fix this issue. Instead, the maintainers recommend that users ensure their environment is on a secure network in case this pattern is in use. The V1 engine is not affected by this issue.
CVSS Score
8.0
EPSS Score
0.007
Published
2025-05-06
vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. Versions starting from 0.8.0 and prior to 0.8.5 are affected by a critical performance vulnerability in the input preprocessing logic of the multimodal tokenizer. The code dynamically replaces placeholder tokens (e.g., <|audio_|>, <|image_|>) with repeated tokens based on precomputed lengths. Due to ​​inefficient list concatenation operations​​, the algorithm exhibits ​​quadratic time complexity (O(n²))​​, allowing malicious actors to trigger resource exhaustion via specially crafted inputs. This issue has been patched in version 0.8.5.
CVSS Score
6.5
EPSS Score
0.001
Published
2025-04-30
vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. Versions starting from 0.5.2 and prior to 0.8.5 are vulnerable to denial of service and data exposure via ZeroMQ on multi-node vLLM deployment. In a multi-node vLLM deployment, vLLM uses ZeroMQ for some multi-node communication purposes. The primary vLLM host opens an XPUB ZeroMQ socket and binds it to ALL interfaces. While the socket is always opened for a multi-node deployment, it is only used when doing tensor parallelism across multiple hosts. Any client with network access to this host can connect to this XPUB socket unless its port is blocked by a firewall. Once connected, these arbitrary clients will receive all of the same data broadcasted to all of the secondary vLLM hosts. This data is internal vLLM state information that is not useful to an attacker. By potentially connecting to this socket many times and not reading data published to them, an attacker can also cause a denial of service by slowing down or potentially blocking the publisher. This issue has been patched in version 0.8.5.
CVSS Score
7.5
EPSS Score
0.001
Published
2025-04-30


Contact Us

Shodan ® - All rights reserved