Vulnerabilities
Vulnerable Software
Vllm:  >> Vllm  >> 0.5.2  Security Vulnerabilities
vLLM is an inference and serving engine for large language models (LLMs). Prior to version 0.9.0, when a new prompt is processed, if the PageAttention mechanism finds a matching prefix chunk, the prefill process speeds up, which is reflected in the TTFT (Time to First Token). These timing differences caused by matching chunks are significant enough to be recognized and exploited. This issue has been patched in version 0.9.0.
CVSS Score
2.6
EPSS Score
0.0
Published
2025-05-29
vLLM is an inference and serving engine for large language models. In a multi-node vLLM deployment using the V0 engine, vLLM uses ZeroMQ for some multi-node communication purposes. The secondary vLLM hosts open a `SUB` ZeroMQ socket and connect to an `XPUB` socket on the primary vLLM host. When data is received on this `SUB` socket, it is deserialized with `pickle`. This is unsafe, as it can be abused to execute code on a remote machine. Since the vulnerability exists in a client that connects to the primary vLLM host, this vulnerability serves as an escalation point. If the primary vLLM host is compromised, this vulnerability could be used to compromise the rest of the hosts in the vLLM deployment. Attackers could also use other means to exploit the vulnerability without requiring access to the primary vLLM host. One example would be the use of ARP cache poisoning to redirect traffic to a malicious endpoint used to deliver a payload with arbitrary code to execute on the target machine. Note that this issue only affects the V0 engine, which has been off by default since v0.8.0. Further, the issue only applies to a deployment using tensor parallelism across multiple hosts, which we do not expect to be a common deployment pattern. Since V0 is has been off by default since v0.8.0 and the fix is fairly invasive, the maintainers of vLLM have decided not to fix this issue. Instead, the maintainers recommend that users ensure their environment is on a secure network in case this pattern is in use. The V1 engine is not affected by this issue.
CVSS Score
8.0
EPSS Score
0.007
Published
2025-05-06
vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. Versions starting from 0.5.2 and prior to 0.8.5 are vulnerable to denial of service and data exposure via ZeroMQ on multi-node vLLM deployment. In a multi-node vLLM deployment, vLLM uses ZeroMQ for some multi-node communication purposes. The primary vLLM host opens an XPUB ZeroMQ socket and binds it to ALL interfaces. While the socket is always opened for a multi-node deployment, it is only used when doing tensor parallelism across multiple hosts. Any client with network access to this host can connect to this XPUB socket unless its port is blocked by a firewall. Once connected, these arbitrary clients will receive all of the same data broadcasted to all of the secondary vLLM hosts. This data is internal vLLM state information that is not useful to an attacker. By potentially connecting to this socket many times and not reading data published to them, an attacker can also cause a denial of service by slowing down or potentially blocking the publisher. This issue has been patched in version 0.8.5.
CVSS Score
7.5
EPSS Score
0.001
Published
2025-04-30
vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. The outlines library is one of the backends used by vLLM to support structured output (a.k.a. guided decoding). Outlines provides an optional cache for its compiled grammars on the local filesystem. This cache has been on by default in vLLM. Outlines is also available by default through the OpenAI compatible API server. The affected code in vLLM is vllm/model_executor/guided_decoding/outlines_logits_processors.py, which unconditionally uses the cache from outlines. A malicious user can send a stream of very short decoding requests with unique schemas, resulting in an addition to the cache for each request. This can result in a Denial of Service if the filesystem runs out of space. Note that even if vLLM was configured to use a different backend by default, it is still possible to choose outlines on a per-request basis using the guided_decoding_backend key of the extra_body field of the request. This issue applies only to the V0 engine and is fixed in 0.8.0.
CVSS Score
6.5
EPSS Score
0.002
Published
2025-03-19
vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. Maliciously constructed statements can lead to hash collisions, resulting in cache reuse, which can interfere with subsequent responses and cause unintended behavior. Prefix caching makes use of Python's built-in hash() function. As of Python 3.12, the behavior of hash(None) has changed to be a predictable constant value. This makes it more feasible that someone could try exploit hash collisions. The impact of a collision would be using cache that was generated using different content. Given knowledge of prompts in use and predictable hashing behavior, someone could intentionally populate the cache using a prompt known to collide with another prompt in use. This issue has been addressed in version 0.7.2 and all users are advised to upgrade. There are no known workarounds for this vulnerability.
CVSS Score
2.6
EPSS Score
0.0
Published
2025-02-07
vLLM is a library for LLM inference and serving. vllm/model_executor/weight_utils.py implements hf_model_weights_iterator to load the model checkpoint, which is downloaded from huggingface. It uses the torch.load function and the weights_only parameter defaults to False. When torch.load loads malicious pickle data, it will execute arbitrary code during unpickling. This vulnerability is fixed in v0.7.0.
CVSS Score
7.5
EPSS Score
0.001
Published
2025-01-27


Contact Us

Shodan ® - All rights reserved