In mlflow/mlflow version 2.18, an admin is able to create a new user account without setting a password. This vulnerability could lead to security risks, as accounts without passwords may be susceptible to unauthorized access. Additionally, this issue violates best practices for secure user account management. The issue is fixed in version 2.19.0.
Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called.
A Local File Inclusion (LFI) vulnerability was identified in mlflow/mlflow, specifically in version 2.9.2, which was fixed in version 2.11.3. This vulnerability arises from the application's failure to properly validate URI fragments for directory traversal sequences such as '../'. An attacker can exploit this flaw by manipulating the fragment part of the URI to read arbitrary files on the local file system, including sensitive files like '/etc/passwd'. The vulnerability is a bypass to a previous patch that only addressed similar manipulation within the URI's query string, highlighting the need for comprehensive validation of all parts of a URI to prevent LFI attacks.
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.5.0 or newer, enabling a maliciously uploaded Langchain AgentExecutor model to run arbitrary code on an end user’s system when interacted with.
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user’s system when interacted with.
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.27.0 or newer, enabling a maliciously crafted Recipe to execute arbitrary code on an end user’s system when run.
Remote Code Execution can occur in versions of the MLflow platform running version 1.11.0 or newer, enabling a maliciously crafted MLproject to execute arbitrary code on an end user’s system when run.
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.9.0 or newer, enabling a maliciously uploaded PyFunc model to run arbitrary code on an end user’s system when interacted with.
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.24.0 or newer, enabling a maliciously uploaded pmdarima model to run arbitrary code on an end user’s system when interacted with.
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.23.0 or newer, enabling a maliciously uploaded LightGBM scikit-learn model to run arbitrary code on an end user’s system when interacted with.