In the Linux kernel, the following vulnerability has been resolved:
spi: spi-imx: Add check for spi_imx_setupxfer()
Add check for the return value of spi_imx_setupxfer().
spi_imx->rx and spi_imx->tx function pointer can be NULL when
spi_imx_setupxfer() return error, and make NULL pointer dereference.
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
Call trace:
0x0
spi_imx_pio_transfer+0x50/0xd8
spi_imx_transfer_one+0x18c/0x858
spi_transfer_one_message+0x43c/0x790
__spi_pump_transfer_message+0x238/0x5d4
__spi_sync+0x2b0/0x454
spi_write_then_read+0x11c/0x200
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix WARNING "do not call blocking ops when !TASK_RUNNING"
wait_event_timeout() will set the state of the current
task to TASK_UNINTERRUPTIBLE, before doing the condition check. This
means that ksmbd_durable_scavenger_alive() will try to acquire the mutex
while already in a sleeping state. The scheduler warns us by giving
the following warning:
do not call blocking ops when !TASK_RUNNING; state=2 set at
[<0000000061515a6f>] prepare_to_wait_event+0x9f/0x6c0
WARNING: CPU: 2 PID: 4147 at kernel/sched/core.c:10099 __might_sleep+0x12f/0x160
mutex lock is not needed in ksmbd_durable_scavenger_alive().
In the Linux kernel, the following vulnerability has been resolved:
udmabuf: fix a buf size overflow issue during udmabuf creation
by casting size_limit_mb to u64 when calculate pglimit.
In the Linux kernel, the following vulnerability has been resolved:
sound/virtio: Fix cancel_sync warnings on uninitialized work_structs
Betty reported hitting the following warning:
[ 8.709131][ T221] WARNING: CPU: 2 PID: 221 at kernel/workqueue.c:4182
...
[ 8.713282][ T221] Call trace:
[ 8.713365][ T221] __flush_work+0x8d0/0x914
[ 8.713468][ T221] __cancel_work_sync+0xac/0xfc
[ 8.713570][ T221] cancel_work_sync+0x24/0x34
[ 8.713667][ T221] virtsnd_remove+0xa8/0xf8 [virtio_snd ab15f34d0dd772f6d11327e08a81d46dc9c36276]
[ 8.713868][ T221] virtsnd_probe+0x48c/0x664 [virtio_snd ab15f34d0dd772f6d11327e08a81d46dc9c36276]
[ 8.714035][ T221] virtio_dev_probe+0x28c/0x390
[ 8.714139][ T221] really_probe+0x1bc/0x4c8
...
It seems we're hitting the error path in virtsnd_probe(), which
triggers a virtsnd_remove() which iterates over the substreams
calling cancel_work_sync() on the elapsed_period work_struct.
Looking at the code, from earlier in:
virtsnd_probe()->virtsnd_build_devs()->virtsnd_pcm_parse_cfg()
We set snd->nsubstreams, allocate the snd->substreams, and if
we then hit an error on the info allocation or something in
virtsnd_ctl_query_info() fails, we will exit without having
initialized the elapsed_period work_struct.
When that error path unwinds we then call virtsnd_remove()
which as long as the substreams array is allocated, will iterate
through calling cancel_work_sync() on the uninitialized work
struct hitting this warning.
Takashi Iwai suggested this fix, which initializes the substreams
structure right after allocation, so that if we hit the error
paths we avoid trying to cleanup uninitialized data.
Note: I have not yet managed to reproduce the issue myself, so
this patch has had limited testing.
Feedback or thoughts would be appreciated!
In the Linux kernel, the following vulnerability has been resolved:
driver core: fix potential NULL pointer dereference in dev_uevent()
If userspace reads "uevent" device attribute at the same time as another
threads unbinds the device from its driver, change to dev->driver from a
valid pointer to NULL may result in crash. Fix this by using READ_ONCE()
when fetching the pointer, and take bus' drivers klist lock to make sure
driver instance will not disappear while we access it.
Use WRITE_ONCE() when setting the driver pointer to ensure there is no
tearing.
In the Linux kernel, the following vulnerability has been resolved:
ACPI: APEI: Fix integer overflow in ghes_estatus_pool_init()
Change num_ghes from int to unsigned int, preventing an overflow
and causing subsequent vmalloc() to fail.
The overflow happens in ghes_estatus_pool_init() when calculating
len during execution of the statement below as both multiplication
operands here are signed int:
len += (num_ghes * GHES_ESOURCE_PREALLOC_MAX_SIZE);
The following call trace is observed because of this bug:
[ 9.317108] swapper/0: vmalloc error: size 18446744071562596352, exceeds total pages, mode:0xcc0(GFP_KERNEL), nodemask=(null),cpuset=/,mems_allowed=0-1
[ 9.317131] Call Trace:
[ 9.317134] <TASK>
[ 9.317137] dump_stack_lvl+0x49/0x5f
[ 9.317145] dump_stack+0x10/0x12
[ 9.317146] warn_alloc.cold+0x7b/0xdf
[ 9.317150] ? __device_attach+0x16a/0x1b0
[ 9.317155] __vmalloc_node_range+0x702/0x740
[ 9.317160] ? device_add+0x17f/0x920
[ 9.317164] ? dev_set_name+0x53/0x70
[ 9.317166] ? platform_device_add+0xf9/0x240
[ 9.317168] __vmalloc_node+0x49/0x50
[ 9.317170] ? ghes_estatus_pool_init+0x43/0xa0
[ 9.317176] vmalloc+0x21/0x30
[ 9.317177] ghes_estatus_pool_init+0x43/0xa0
[ 9.317179] acpi_hest_init+0x129/0x19c
[ 9.317185] acpi_init+0x434/0x4a4
[ 9.317188] ? acpi_sleep_proc_init+0x2a/0x2a
[ 9.317190] do_one_initcall+0x48/0x200
[ 9.317195] kernel_init_freeable+0x221/0x284
[ 9.317200] ? rest_init+0xe0/0xe0
[ 9.317204] kernel_init+0x1a/0x130
[ 9.317205] ret_from_fork+0x22/0x30
[ 9.317208] </TASK>
[ rjw: Subject and changelog edits ]
In the Linux kernel, the following vulnerability has been resolved:
media: meson: vdec: fix possible refcount leak in vdec_probe()
v4l2_device_unregister need to be called to put the refcount got by
v4l2_device_register when vdec_probe fails or vdec_remove is called.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix NULL pointer dereference in svm_migrate_to_ram()
./drivers/gpu/drm/amd/amdkfd/kfd_migrate.c:985:58-62: ERROR: p is NULL but dereferenced.
In the Linux kernel, the following vulnerability has been resolved:
HSI: ssi_protocol: Fix use after free vulnerability in ssi_protocol Driver Due to Race Condition
In the ssi_protocol_probe() function, &ssi->work is bound with
ssip_xmit_work(), In ssip_pn_setup(), the ssip_pn_xmit() function
within the ssip_pn_ops structure is capable of starting the
work.
If we remove the module which will call ssi_protocol_remove()
to make a cleanup, it will free ssi through kfree(ssi),
while the work mentioned above will be used. The sequence
of operations that may lead to a UAF bug is as follows:
CPU0 CPU1
| ssip_xmit_work
ssi_protocol_remove |
kfree(ssi); |
| struct hsi_client *cl = ssi->cl;
| // use ssi
Fix it by ensuring that the work is canceled before proceeding
with the cleanup in ssi_protocol_remove().