Wasmtime is a runtime for WebAssembly. Prior to versions 24.0.4, 33.0.2, and 34.0.2, a bug in Wasmtime's implementation of the WASIp1 set of import functions can lead to a WebAssembly guest inducing a panic in the host (embedder). The specific bug is triggered by calling `path_open` after calling `fd_renumber` with either two equal argument values or a second argument being equal to a previously-closed file descriptor number value. The corrupt state introduced in `fd_renumber` will lead to the subsequent opening of a file descriptor to panic. This panic cannot introduce memory unsafety or allow WebAssembly to break outside of its sandbox, however. There is no possible heap corruption or memory unsafety from this panic. This bug is in the implementation of Wasmtime's `wasmtime-wasi` crate which provides an implementation of WASIp1. The bug requires a specially crafted call to `fd_renumber` in addition to the ability to open a subsequent file descriptor. Opening a second file descriptor is only possible when a preopened directory was provided to the guest, and this is common amongst embeddings. A panic in the host is considered a denial-of-service vector for WebAssembly embedders and is thus a security issue in Wasmtime. This bug does not affect WASIp2 and embedders using components. In accordance with Wasmtime's release process, patch releases are available as 24.0.4, 33.0.2, and 34.0.2. Users of other release of Wasmtime are recommended to move to a supported release of Wasmtime. Embedders who are using components or are not providing guest access to create more file descriptors (e.g. via a preopened filesystem directory) are not affected by this issue. Otherwise, there is no workaround at this time, and affected embeddings are recommended to update to a patched version which will not cause a panic in the host.
Wasmtime is a fast and secure runtime for WebAssembly. Wasmtime's filesystem sandbox implementation on Windows blocks access to special device filenames such as "COM1", "COM2", "LPT0", "LPT1", and so on, however it did not block access to the special device filenames which use superscript digits, such as "COM¹", "COM²", "LPT⁰", "LPT¹", and so on. Untrusted Wasm programs that are given access to any filesystem directory could bypass the sandbox and access devices through those special device filenames with superscript digits, and through them gain access peripheral devices connected to the computer, or network resources mapped to those devices. This can include modems, printers, network printers, and any other device connected to a serial or parallel port, including emulated USB serial ports. Patch releases for Wasmtime have been issued as 24.0.2, 25.0.3, and 26.0.1. Users of Wasmtime 23.0.x and prior are recommended to upgrade to one of these patched versions. There are no known workarounds for this issue. Affected Windows users are recommended to upgrade.
Wasmtime is a standalone runtime for WebAssembly. Prior to versions 6.0.2, 7.0.1, and 8.0.1, Wasmtime's implementation of managing per-instance state, such as tables and memories, contains LLVM-level undefined behavior. This undefined behavior was found to cause runtime-level issues when compiled with LLVM 16 which causes some writes, which are critical for correctness, to be optimized away. Vulnerable versions of Wasmtime compiled with Rust 1.70, which is currently in beta, or later are known to have incorrectly compiled functions. Versions of Wasmtime compiled with the current Rust stable release, 1.69, and prior are not known at this time to have any issues, but can theoretically exhibit potential issues.
The underlying problem is that Wasmtime's runtime state for an instance involves a Rust-defined structure called `Instance` which has a trailing `VMContext` structure after it. This `VMContext` structure has a runtime-defined layout that is unique per-module. This representation cannot be expressed with safe code in Rust so `unsafe` code is required to maintain this state. The code doing this, however, has methods which take `&self` as an argument but modify data in the `VMContext` part of the allocation. This means that pointers derived from `&self` are mutated. This is typically not allowed, except in the presence of `UnsafeCell`, in Rust. When compiled to LLVM these functions have `noalias readonly` parameters which means it's UB to write through the pointers.
Wasmtime's internal representation and management of `VMContext` has been updated to use `&mut self` methods where appropriate. Additionally verification tools for `unsafe` code in Rust, such as `cargo miri`, are planned to be executed on the `main` branch soon to fix any Rust-level issues that may be exploited in future compiler versions.
Precomplied binaries available for Wasmtime from GitHub releases have been compiled with at most LLVM 15 so are not known to be vulnerable. As mentioned above, however, it's still recommended to update.
Wasmtime version 6.0.2, 7.0.1, and 8.0.1 have been issued which contain the patch necessary to work correctly on LLVM 16 and have no known UB on LLVM 15 and earlier. If Wasmtime is compiled with Rust 1.69 and prior, which use LLVM 15, then there are no known issues. There is a theoretical possibility for undefined behavior to exploited, however, so it's recommended that users upgrade to a patched version of Wasmtime. Users using beta Rust (1.70 at this time) or nightly Rust (1.71 at this time) must update to a patched version to work correctly.