Mbed TLS before 3.6.4 allows a use-after-free in certain situations of applications that are developed in accordance with the documentation. The function mbedtls_x509_string_to_names() takes a head argument that is documented as an output argument. The documentation does not suggest that the function will free that pointer; however, the function does call mbedtls_asn1_free_named_data_list() on that argument, which performs a deep free(). As a result, application code that uses this function (relying only on documented behavior) is likely to still hold pointers to the memory blocks that were freed, resulting in a high risk of use-after-free or double-free. In particular, the two sample programs x509/cert_write and x509/cert_req are affected (use-after-free if the san string contains more than one DN).
Mbed TLS before 3.6.4 has a NULL pointer dereference because mbedtls_asn1_store_named_data can trigger conflicting data with val.p of NULL but val.len greater than zero.
Mbed TLS before 3.6.4 has a race condition in AESNI detection if certain compiler optimizations occur. An attacker may be able to extract an AES key from a multithreaded program, or perform a GCM forgery.
Mbed TLS before 3.6.4 has a PEM parsing one-byte heap-based buffer underflow, in mbedtls_pem_read_buffer and two mbedtls_pk_parse functions, via untrusted PEM input.
An issue was discovered in Mbed TLS through 3.5.1. In mbedtls_ssl_session_reset, the maximum negotiable TLS version is mishandled. For example, if the last connection negotiated TLS 1.2, then 1.2 becomes the new maximum.
Use of a Broken or Risky Cryptographic Algorithm in the function mbedtls_mpi_exp_mod() in lignum.c in Mbed TLS Mbed TLS all versions before 3.0.0, 2.27.0 or 2.16.11 allows attackers with access to precise enough timing and memory access information (typically an untrusted operating system attacking a secure enclave such as SGX or the TrustZone secure world) to recover the private keys used in RSA.
In Mbed TLS before 3.1.0, psa_aead_generate_nonce allows policy bypass or oracle-based decryption when the output buffer is at memory locations accessible to an untrusted application.