Apptainer is an open source container platform. In Apptainer versions less than 1.4.5, a container can disable two of the forms of the little used --security option, in particular the forms --security=apparmor:<profile> and --security=selinux:<label> which otherwise put restrictions on operations that containers can do. The --security option has always been mentioned in Apptainer documentation as being a feature for the root user, although these forms do also work for unprivileged users on systems where the corresponding feature is enabled. Apparmor is enabled by default on Debian-based distributions and SElinux is enabled by default on RHEL-based distributions, but on SUSE it depends on the distribution version. This vulnerability is fixed in 1.4.5.
MLflow Weak Password Requirements Authentication Bypass Vulnerability. This vulnerability allows remote attackers to bypass authentication on affected installations of MLflow. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of passwords. The issue results from weak password requirements. An attacker can leverage this vulnerability to bypass authentication on the system. Was ZDI-CAN-26916.
MLflow Tracking Server Model Creation Directory Traversal Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of MLflow Tracking Server. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of model file paths. The issue results from the lack of proper validation of a user-supplied path prior to using it in file operations. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-26921.
Redis is an open source, in-memory database that persists on disk. Versions 8.2.1 and below allow an authenticated user to use a specially crafted Lua script to manipulate the garbage collector, trigger a use-after-free and potentially lead to remote code execution. The problem exists in all versions of Redis with Lua scripting. This issue is fixed in version 8.2.2. To workaround this issue without patching the redis-server executable is to prevent users from executing Lua scripts. This can be done using ACL to restrict EVAL and EVALSHA commands.
Redis is an open source, in-memory database that persists on disk. In versions starting at 2.6 and prior to 7.4.3, An unauthenticated client can cause unlimited growth of output buffers, until the server runs out of memory or is killed. By default, the Redis configuration does not limit the output buffer of normal clients (see client-output-buffer-limit). Therefore, the output buffer can grow unlimitedly over time. As a result, the service is exhausted and the memory is unavailable. When password authentication is enabled on the Redis server, but no password is provided, the client can still cause the output buffer to grow from "NOAUTH" responses until the system will run out of memory. This issue has been patched in version 7.4.3. An additional workaround to mitigate this problem without patching the redis-server executable is to block access to prevent unauthenticated users from connecting to Redis. This can be done in different ways. Either using network access control tools like firewalls, iptables, security groups, etc, or enabling TLS and requiring users to authenticate using client side certificates.
In mlflow/mlflow version 2.18, an admin is able to create a new user account without setting a password. This vulnerability could lead to security risks, as accounts without passwords may be susceptible to unauthorized access. Additionally, this issue violates best practices for secure user account management. The issue is fixed in version 2.19.0.
In mlflow/mlflow version 2.17.2, the `/graphql` endpoint is vulnerable to a denial of service attack. An attacker can create large batches of queries that repeatedly request all runs from a given experiment. This can tie up all the workers allocated by MLFlow, rendering the application unable to respond to other requests. This vulnerability is due to uncontrolled resource consumption.
A Cross-Site Request Forgery (CSRF) vulnerability exists in the Signup feature of mlflow/mlflow versions 2.17.0 to 2.20.1. This vulnerability allows an attacker to create a new account, which may be used to perform unauthorized actions on behalf of the malicious user.
A path traversal vulnerability exists in mlflow/mlflow version 2.15.1. When users configure and use the dbfs service, concatenating the URL directly into the file protocol results in an arbitrary file read vulnerability. This issue occurs because only the path part of the URL is checked, while parts such as query and parameters are not handled. The vulnerability is triggered if the user has configured the dbfs service, and during usage, the service is mounted to a local directory.
In mlflow/mlflow version v2.13.2, a vulnerability exists that allows the creation or renaming of an experiment with a large number of integers in its name due to the lack of a limit on the experiment name. This can cause the MLflow UI panel to become unresponsive, leading to a potential denial of service. Additionally, there is no character limit in the `artifact_location` parameter while creating the experiment.