Vulnerabilities
Vulnerable Software
Debian:  Security Vulnerabilities
GIMP XWD File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of XWD files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27823.
CVSS Score
7.8
EPSS Score
0.001
Published
2025-10-29
GIMP HDR File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of HDR files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27803.
CVSS Score
7.8
EPSS Score
0.001
Published
2025-10-29
GIMP DCM File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of DCM files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27863.
CVSS Score
7.8
EPSS Score
0.001
Published
2025-10-29
CVE-2025-41244
Known exploited
VMware Aria Operations and VMware Tools contain a local privilege escalation vulnerability. A malicious local actor with non-administrative privileges having access to a VM with VMware Tools installed and managed by Aria Operations with SDMP enabled may exploit this vulnerability to escalate privileges to root on the same VM.
CVSS Score
7.8
EPSS Score
0.008
Published
2025-09-29
It was discovered that uscan, a tool to scan/watch upstream sources for new releases of software, included in devscripts (a collection of scripts to make the life of a Debian Package maintainer easier), skips OpenPGP verification if the upstream source is already downloaded from a previous run even if the verification failed back then.
CVSS Score
9.8
EPSS Score
0.0
Published
2025-08-01
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_conntrack: fix crash due to removal of uninitialised entry A crash in conntrack was reported while trying to unlink the conntrack entry from the hash bucket list: [exception RIP: __nf_ct_delete_from_lists+172] [..] #7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack] #8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack] #9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack] [..] The nf_conn struct is marked as allocated from slab but appears to be in a partially initialised state: ct hlist pointer is garbage; looks like the ct hash value (hence crash). ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected ct->timeout is 30000 (=30s), which is unexpected. Everything else looks like normal udp conntrack entry. If we ignore ct->status and pretend its 0, the entry matches those that are newly allocated but not yet inserted into the hash: - ct hlist pointers are overloaded and store/cache the raw tuple hash - ct->timeout matches the relative time expected for a new udp flow rather than the absolute 'jiffies' value. If it were not for the presence of IPS_CONFIRMED, __nf_conntrack_find_get() would have skipped the entry. Theory is that we did hit following race: cpu x cpu y cpu z found entry E found entry E E is expired <preemption> nf_ct_delete() return E to rcu slab init_conntrack E is re-inited, ct->status set to 0 reply tuplehash hnnode.pprev stores hash value. cpu y found E right before it was deleted on cpu x. E is now re-inited on cpu z. cpu y was preempted before checking for expiry and/or confirm bit. ->refcnt set to 1 E now owned by skb ->timeout set to 30000 If cpu y were to resume now, it would observe E as expired but would skip E due to missing CONFIRMED bit. nf_conntrack_confirm gets called sets: ct->status |= CONFIRMED This is wrong: E is not yet added to hashtable. cpu y resumes, it observes E as expired but CONFIRMED: <resumes> nf_ct_expired() -> yes (ct->timeout is 30s) confirmed bit set. cpu y will try to delete E from the hashtable: nf_ct_delete() -> set DYING bit __nf_ct_delete_from_lists Even this scenario doesn't guarantee a crash: cpu z still holds the table bucket lock(s) so y blocks: wait for spinlock held by z CONFIRMED is set but there is no guarantee ct will be added to hash: "chaintoolong" or "clash resolution" logic both skip the insert step. reply hnnode.pprev still stores the hash value. unlocks spinlock return NF_DROP <unblocks, then crashes on hlist_nulls_del_rcu pprev> In case CPU z does insert the entry into the hashtable, cpu y will unlink E again right away but no crash occurs. Without 'cpu y' race, 'garbage' hlist is of no consequence: ct refcnt remains at 1, eventually skb will be free'd and E gets destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy. To resolve this, move the IPS_CONFIRMED assignment after the table insertion but before the unlock. Pablo points out that the confirm-bit-store could be reordered to happen before hlist add resp. the timeout fixup, so switch to set_bit and before_atomic memory barrier to prevent this. It doesn't matter if other CPUs can observe a newly inserted entry right before the CONFIRMED bit was set: Such event cannot be distinguished from above "E is the old incarnation" case: the entry will be skipped. Also change nf_ct_should_gc() to first check the confirmed bit. The gc sequence is: 1. Check if entry has expired, if not skip to next entry 2. Obtain a reference to the expired entry. 3. Call nf_ct_should_gc() to double-check step 1. nf_ct_should_gc() is thus called only for entries that already failed an expiry check. After this patch, once the confirmed bit check pas ---truncated---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-28
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix null-ptr-deref in l2cap_sock_resume_cb() syzbot reported null-ptr-deref in l2cap_sock_resume_cb(). [0] l2cap_sock_resume_cb() has a similar problem that was fixed by commit 1bff51ea59a9 ("Bluetooth: fix use-after-free error in lock_sock_nested()"). Since both l2cap_sock_kill() and l2cap_sock_resume_cb() are executed under l2cap_sock_resume_cb(), we can avoid the issue simply by checking if chan->data is NULL. Let's not access to the killed socket in l2cap_sock_resume_cb(). [0]: BUG: KASAN: null-ptr-deref in instrument_atomic_write include/linux/instrumented.h:82 [inline] BUG: KASAN: null-ptr-deref in clear_bit include/asm-generic/bitops/instrumented-atomic.h:41 [inline] BUG: KASAN: null-ptr-deref in l2cap_sock_resume_cb+0xb4/0x17c net/bluetooth/l2cap_sock.c:1711 Write of size 8 at addr 0000000000000570 by task kworker/u9:0/52 CPU: 1 UID: 0 PID: 52 Comm: kworker/u9:0 Not tainted 6.16.0-rc4-syzkaller-g7482bb149b9f #0 PREEMPT Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 Workqueue: hci0 hci_rx_work Call trace: show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:501 (C) __dump_stack+0x30/0x40 lib/dump_stack.c:94 dump_stack_lvl+0xd8/0x12c lib/dump_stack.c:120 print_report+0x58/0x84 mm/kasan/report.c:524 kasan_report+0xb0/0x110 mm/kasan/report.c:634 check_region_inline mm/kasan/generic.c:-1 [inline] kasan_check_range+0x264/0x2a4 mm/kasan/generic.c:189 __kasan_check_write+0x20/0x30 mm/kasan/shadow.c:37 instrument_atomic_write include/linux/instrumented.h:82 [inline] clear_bit include/asm-generic/bitops/instrumented-atomic.h:41 [inline] l2cap_sock_resume_cb+0xb4/0x17c net/bluetooth/l2cap_sock.c:1711 l2cap_security_cfm+0x524/0xea0 net/bluetooth/l2cap_core.c:7357 hci_auth_cfm include/net/bluetooth/hci_core.h:2092 [inline] hci_auth_complete_evt+0x2e8/0xa4c net/bluetooth/hci_event.c:3514 hci_event_func net/bluetooth/hci_event.c:7511 [inline] hci_event_packet+0x650/0xe9c net/bluetooth/hci_event.c:7565 hci_rx_work+0x320/0xb18 net/bluetooth/hci_core.c:4070 process_one_work+0x7e8/0x155c kernel/workqueue.c:3238 process_scheduled_works kernel/workqueue.c:3321 [inline] worker_thread+0x958/0xed8 kernel/workqueue.c:3402 kthread+0x5fc/0x75c kernel/kthread.c:464 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:847
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-28
In the Linux kernel, the following vulnerability has been resolved: usb: net: sierra: check for no status endpoint The driver checks for having three endpoints and having bulk in and out endpoints, but not that the third endpoint is interrupt input. Rectify the omission.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-28
In the Linux kernel, the following vulnerability has been resolved: rpl: Fix use-after-free in rpl_do_srh_inline(). Running lwt_dst_cache_ref_loop.sh in selftest with KASAN triggers the splat below [0]. rpl_do_srh_inline() fetches ipv6_hdr(skb) and accesses it after skb_cow_head(), which is illegal as the header could be freed then. Let's fix it by making oldhdr to a local struct instead of a pointer. [0]: [root@fedora net]# ./lwt_dst_cache_ref_loop.sh ... TEST: rpl (input) [ 57.631529] ================================================================== BUG: KASAN: slab-use-after-free in rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174) Read of size 40 at addr ffff888122bf96d8 by task ping6/1543 CPU: 50 UID: 0 PID: 1543 Comm: ping6 Not tainted 6.16.0-rc5-01302-gfadd1e6231b1 #23 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 Call Trace: <IRQ> dump_stack_lvl (lib/dump_stack.c:122) print_report (mm/kasan/report.c:409 mm/kasan/report.c:521) kasan_report (mm/kasan/report.c:221 mm/kasan/report.c:636) kasan_check_range (mm/kasan/generic.c:175 (discriminator 1) mm/kasan/generic.c:189 (discriminator 1)) __asan_memmove (mm/kasan/shadow.c:94 (discriminator 2)) rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174) rpl_input (net/ipv6/rpl_iptunnel.c:201 net/ipv6/rpl_iptunnel.c:282) lwtunnel_input (net/core/lwtunnel.c:459) ipv6_rcv (./include/net/dst.h:471 (discriminator 1) ./include/net/dst.h:469 (discriminator 1) net/ipv6/ip6_input.c:79 (discriminator 1) ./include/linux/netfilter.h:317 (discriminator 1) ./include/linux/netfilter.h:311 (discriminator 1) net/ipv6/ip6_input.c:311 (discriminator 1)) __netif_receive_skb_one_core (net/core/dev.c:5967) process_backlog (./include/linux/rcupdate.h:869 net/core/dev.c:6440) __napi_poll.constprop.0 (net/core/dev.c:7452) net_rx_action (net/core/dev.c:7518 net/core/dev.c:7643) handle_softirqs (kernel/softirq.c:579) do_softirq (kernel/softirq.c:480 (discriminator 20)) </IRQ> <TASK> __local_bh_enable_ip (kernel/softirq.c:407) __dev_queue_xmit (net/core/dev.c:4740) ip6_finish_output2 (./include/linux/netdevice.h:3358 ./include/net/neighbour.h:526 ./include/net/neighbour.h:540 net/ipv6/ip6_output.c:141) ip6_finish_output (net/ipv6/ip6_output.c:215 net/ipv6/ip6_output.c:226) ip6_output (./include/linux/netfilter.h:306 net/ipv6/ip6_output.c:248) ip6_send_skb (net/ipv6/ip6_output.c:1983) rawv6_sendmsg (net/ipv6/raw.c:588 net/ipv6/raw.c:918) __sys_sendto (net/socket.c:714 (discriminator 1) net/socket.c:729 (discriminator 1) net/socket.c:2228 (discriminator 1)) __x64_sys_sendto (net/socket.c:2231) do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1)) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) RIP: 0033:0x7f68cffb2a06 Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08 RSP: 002b:00007ffefb7c53d0 EFLAGS: 00000202 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 0000564cd69f10a0 RCX: 00007f68cffb2a06 RDX: 0000000000000040 RSI: 0000564cd69f10a4 RDI: 0000000000000003 RBP: 00007ffefb7c53f0 R08: 0000564cd6a032ac R09: 000000000000001c R10: 0000000000000000 R11: 0000000000000202 R12: 0000564cd69f10a4 R13: 0000000000000040 R14: 00007ffefb7c66e0 R15: 0000564cd69f10a0 </TASK> Allocated by task 1543: kasan_save_stack (mm/kasan/common.c:48) kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1)) __kasan_slab_alloc (mm/kasan/common.c:319 mm/kasan/common.c:345) kmem_cache_alloc_node_noprof (./include/linux/kasan.h:250 mm/slub.c:4148 mm/slub.c:4197 mm/slub.c:4249) kmalloc_reserve (net/core/skbuff.c:581 (discriminator 88)) __alloc_skb (net/core/skbuff.c:669) __ip6_append_data (net/ipv6/ip6_output.c:1672 (discriminator 1)) ip6_ ---truncated---
CVSS Score
7.8
EPSS Score
0.0
Published
2025-07-28
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_qfq: Fix race condition on qfq_aggregate A race condition can occur when 'agg' is modified in qfq_change_agg (called during qfq_enqueue) while other threads access it concurrently. For example, qfq_dump_class may trigger a NULL dereference, and qfq_delete_class may cause a use-after-free. This patch addresses the issue by: 1. Moved qfq_destroy_class into the critical section. 2. Added sch_tree_lock protection to qfq_dump_class and qfq_dump_class_stats.
CVSS Score
4.7
EPSS Score
0.0
Published
2025-07-28


Contact Us

Shodan ® - All rights reserved