Insufficient control flow management in AmdCpmOemSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to an escalation of privileges.
Insufficient control flow management in AmdCpmGpioInitSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to escalation of privileges.
Failure to validate the communication buffer and communication service in the BIOS may allow an attacker to tamper with the buffer resulting in potential SMM (System Management Mode) arbitrary code execution.
Execution unit scheduler contention may lead to a side channel vulnerability found on AMD CPU microarchitectures codenamed “Zen 1”, “Zen 2” and “Zen 3” that use simultaneous multithreading (SMT). By measuring the contention level on scheduler queues an attacker may potentially leak sensitive information.
A malformed SMI (System Management Interface) command may allow an attacker to establish a corrupted SMI Trigger Info data structure, potentially leading to out-of-bounds memory reads and writes when triggering an SMI resulting in a potential loss of resources.
Mis-trained branch predictions for return instructions may allow arbitrary speculative code execution under certain microarchitecture-dependent conditions.
A potential vulnerability in some AMD processors using frequency scaling may allow an authenticated attacker to execute a timing attack to potentially enable information disclosure.
Insufficient bound checks in System Management Unit (SMU) PCIe Hot Plug table may result in access/updates from/to invalid address space that could result in denial of service.