The libcurl CURLOPT_SSL_VERIFYPEER option was disabled on a subset of requests made by Nest production devices which enabled a potential man-in-the-middle attack on requests to Google cloud services by any host the traffic was routed through.
libcurl's ASN1 parser code has the `GTime2str()` function, used for parsing an
ASN.1 Generalized Time field. If given an syntactically incorrect field, the
parser might end up using -1 for the length of the *time fraction*, leading to
a `strlen()` getting performed on a pointer to a heap buffer area that is not
(purposely) null terminated.
This flaw most likely leads to a crash, but can also lead to heap contents
getting returned to the application when
[CURLINFO_CERTINFO](https://curl.se/libcurl/c/CURLINFO_CERTINFO.html) is used.
libcurl's ASN1 parser has this utf8asn1str() function used for parsing an ASN.1 UTF-8 string. Itcan detect an invalid field and return error. Unfortunately, when doing so it also invokes `free()` on a 4 byte localstack buffer. Most modern malloc implementations detect this error and immediately abort. Some however accept the input pointer and add that memory to its list of available chunks. This leads to the overwriting of nearby stack memory. The content of the overwrite is decided by the `free()` implementation; likely to be memory pointers and a set of flags. The most likely outcome of exploting this flaw is a crash, although it cannot be ruled out that more serious results can be had in special circumstances.
libcurl's URL API function
[curl_url_get()](https://curl.se/libcurl/c/curl_url_get.html) offers punycode
conversions, to and from IDN. Asking to convert a name that is exactly 256
bytes, libcurl ends up reading outside of a stack based buffer when built to
use the *macidn* IDN backend. The conversion function then fills up the
provided buffer exactly - but does not null terminate the string.
This flaw can lead to stack contents accidently getting returned as part of
the converted string.
This flaw makes curl overflow a heap based buffer in the SOCKS5 proxy
handshake.
When curl is asked to pass along the host name to the SOCKS5 proxy to allow
that to resolve the address instead of it getting done by curl itself, the
maximum length that host name can be is 255 bytes.
If the host name is detected to be longer, curl switches to local name
resolving and instead passes on the resolved address only. Due to this bug,
the local variable that means "let the host resolve the name" could get the
wrong value during a slow SOCKS5 handshake, and contrary to the intention,
copy the too long host name to the target buffer instead of copying just the
resolved address there.
The target buffer being a heap based buffer, and the host name coming from the
URL that curl has been told to operate with.
This flaw allows an attacker to insert cookies at will into a running program
using libcurl, if the specific series of conditions are met.
libcurl performs transfers. In its API, an application creates "easy handles"
that are the individual handles for single transfers.
libcurl provides a function call that duplicates en easy handle called
[curl_easy_duphandle](https://curl.se/libcurl/c/curl_easy_duphandle.html).
If a transfer has cookies enabled when the handle is duplicated, the
cookie-enable state is also cloned - but without cloning the actual
cookies. If the source handle did not read any cookies from a specific file on
disk, the cloned version of the handle would instead store the file name as
`none` (using the four ASCII letters, no quotes).
Subsequent use of the cloned handle that does not explicitly set a source to
load cookies from would then inadvertently load cookies from a file named
`none` - if such a file exists and is readable in the current directory of the
program using libcurl. And if using the correct file format of course.
An authentication bypass vulnerability exists in libcurl <8.0.0 in the FTP connection reuse feature that can result in wrong credentials being used during subsequent transfers. Previously created connections are kept in a connection pool for reuse if they match the current setup. However, certain FTP settings such as CURLOPT_FTP_ACCOUNT, CURLOPT_FTP_ALTERNATIVE_TO_USER, CURLOPT_FTP_SSL_CCC, and CURLOPT_USE_SSL were not included in the configuration match checks, causing them to match too easily. This could lead to libcurl using the wrong credentials when performing a transfer, potentially allowing unauthorized access to sensitive information.
An authentication bypass vulnerability exists libcurl <8.0.0 in the connection reuse feature which can reuse previously established connections with incorrect user permissions due to a failure to check for changes in the CURLOPT_GSSAPI_DELEGATION option. This vulnerability affects krb5/kerberos/negotiate/GSSAPI transfers and could potentially result in unauthorized access to sensitive information. The safest option is to not reuse connections if the CURLOPT_GSSAPI_DELEGATION option has been changed.
A double free vulnerability exists in libcurl <8.0.0 when sharing HSTS data between separate "handles". This sharing was introduced without considerations for do this sharing across separate threads but there was no indication of this fact in the documentation. Due to missing mutexes or thread locks, two threads sharing the same HSTS data could end up doing a double-free or use-after-free.
An authentication bypass vulnerability exists in libcurl prior to v8.0.0 where it reuses a previously established SSH connection despite the fact that an SSH option was modified, which should have prevented reuse. libcurl maintains a pool of previously used connections to reuse them for subsequent transfers if the configurations match. However, two SSH settings were omitted from the configuration check, allowing them to match easily, potentially leading to the reuse of an inappropriate connection.