A vulnerability in the iPXE boot function of Cisco IOS XR software could allow an authenticated, local attacker to install an unverified software image on an affected device.
This vulnerability is due to insufficient image verification. An attacker could exploit this vulnerability by manipulating the boot parameters for image verification during the iPXE boot process on an affected device. A successful exploit could allow the attacker to boot an unverified software image on the affected device.
A vulnerability in the Cisco IOx application hosting subsystem of Cisco IOS XE Software could allow an authenticated, local attacker to elevate privileges to root on an affected device.
This vulnerability is due to insufficient restrictions on the hosted application. An attacker could exploit this vulnerability by logging in to and then escaping the Cisco IOx application container. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with root privileges.
A vulnerability in the web UI of Cisco IOS XE Software could allow an authenticated, remote attacker to perform a directory traversal and access resources that are outside the filesystem mountpoint of the web UI. This vulnerability is due to an insufficient security configuration. An attacker could exploit this vulnerability by sending a crafted request to the web UI. A successful exploit could allow the attacker to gain read access to files that are outside the filesystem mountpoint of the web UI. Note: These files are located on a restricted filesystem that is maintained for the web UI. There is no ability to write to any files on this filesystem.
A vulnerability in the IPv6 DHCP (DHCPv6) client module of Cisco Adaptive Security Appliance (ASA) Software, Cisco Firepower Threat Defense (FTD) Software, Cisco IOS Software, and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient validation of DHCPv6 messages. An attacker could exploit this vulnerability by sending crafted DHCPv6 messages to an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition. Note: To successfully exploit this vulnerability, the attacker would need to either control the DHCPv6 server or be in a man-in-the-middle position.
A vulnerability in the processing of malformed Common Industrial Protocol (CIP) packets that are sent to Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause an affected device to unexpectedly reload, resulting in a denial of service (DoS) condition. This vulnerability is due to insufficient input validation during processing of CIP packets. An attacker could exploit this vulnerability by sending a malformed CIP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to unexpectedly reload, resulting in a DoS condition.
A vulnerability in the UDP processing functionality of Cisco IOS XE Software for Embedded Wireless Controllers on Catalyst 9100 Series Access Points could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition. This vulnerability is due to the improper processing of UDP datagrams. An attacker could exploit this vulnerability by sending malicious UDP datagrams to an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition.
A vulnerability in the ingress packet processing function of Cisco IOS XR Software for Cisco ASR 9000 Series Aggregation Services Routers could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to improper resource allocation when an affected device processes network traffic in software switching mode (punted). An attacker could exploit this vulnerability by sending specific streams of Layer 2 or Layer 3 protocol data units (PDUs) to an affected device. A successful exploit could cause the affected device to run out of buffer resources, which could make the device unable to process or forward traffic, resulting in a DoS condition. The device would need to be restarted to regain functionality.
Multiple vulnerabilities in the Distance Vector Multicast Routing Protocol (DVMRP) feature of Cisco IOS XR Software could allow an unauthenticated, remote attacker to either immediately crash the Internet Group Management Protocol (IGMP) process or make it consume available memory and eventually crash. The memory consumption may negatively impact other processes that are running on the device. These vulnerabilities are due to the incorrect handling of IGMP packets. An attacker could exploit these vulnerabilities by sending crafted IGMP traffic to an affected device. A successful exploit could allow the attacker to immediately crash the IGMP process or cause memory exhaustion, resulting in other processes becoming unstable. These processes may include, but are not limited to, interior and exterior routing protocols. Cisco will release software updates that address these vulnerabilities.
A vulnerability in task group assignment for a specific CLI command in Cisco IOS XR Software could allow an authenticated, local attacker to execute that command, even though administrative privileges should be required. The attacker must have valid credentials on the affected device. The vulnerability is due to incorrect mapping in the source code of task group assignments for a specific command. An attacker could exploit this vulnerability by issuing the command, which they should not be authorized to issue, on an affected device. A successful exploit could allow the attacker to invalidate the integrity of the disk and cause the device to restart. This vulnerability could allow a user with read permissions to issue a specific command that should require Administrator privileges.
A vulnerability in the Cisco Discovery Protocol implementation for Cisco FXOS Software, Cisco IOS XR Software, and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to a missing check when the affected software processes Cisco Discovery Protocol messages. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol packet to an affected device. A successful exploit could allow the attacker to exhaust system memory, causing the device to reload. Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).