A vulnerability in the client forwarding code of multiple Cisco Access Points (APs) could allow an unauthenticated, adjacent attacker to inject packets from the native VLAN to clients within nonnative VLANs on an affected device. This vulnerability is due to a logic error on the AP that forwards packets that are destined to a wireless client if they are received on the native VLAN. An attacker could exploit this vulnerability by obtaining access to the native VLAN and directing traffic directly to the client through their MAC/IP combination. A successful exploit could allow the attacker to bypass VLAN separation and potentially also bypass any Layer 3 protection mechanisms that are deployed.
A vulnerability in the authentication functionality of Cisco Wireless LAN Controller (WLC) Software could allow an unauthenticated, remote attacker to bypass authentication controls and log in to the device through the management interface This vulnerability is due to the improper implementation of the password validation algorithm. An attacker could exploit this vulnerability by logging in to an affected device with crafted credentials. A successful exploit could allow the attacker to bypass authentication and log in to the device as an administrator. The attacker could obtain privileges that are the same level as an administrative user but it depends on the crafted credentials. Note: This vulnerability exists because of a non-default device configuration that must be present for it to be exploitable. For details about the vulnerable configuration, see the Vulnerable Products section of this advisory.
A vulnerability in the WLAN Control Protocol (WCP) implementation for Cisco Aironet Access Point (AP) software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. This vulnerability is due to incorrect error handling when an affected device receives an unexpected 802.11 frame. An attacker could exploit this vulnerability by sending certain 802.11 frames over the wireless network to an interface on an affected AP. A successful exploit could allow the attacker to cause a packet buffer leak. This could eventually result in buffer allocation failures, which would trigger a reload of the affected device.
A vulnerability in the SSH management feature of multiple Cisco Access Points (APs) platforms could allow a local, authenticated user to modify files on the affected device and possibly gain escalated privileges. The vulnerability is due to improper checking on file operations within the SSH management interface. A network administrator user could exploit this vulnerability by accessing an affected device through SSH management to make a configuration change. A successful exploit could allow the attacker to gain privileges equivalent to the root user.
A vulnerability in Cisco Aironet Access Points (APs) could allow an unauthenticated, remote attacker to cause a denial of service (DoS) on an affected device. The vulnerability is due to improper resource management while processing specific packets. An attacker could exploit this vulnerability by sending a series of crafted UDP packets to a specific port on an affected device. A successful exploit could either allow the attacker to tear down the connection between the AP and the wireless LAN controller, resulting in the affected device not being able to process client traffic, or cause the vulnerable device to reload, triggering a DoS condition. After the attack, the affected device should automatically recover its normal functions without manual intervention.
A vulnerability in the Ethernet packet handling of Cisco Aironet Access Points (APs) Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by connecting as a wired client to the Ethernet interface of an affected device and sending a series of specific packets within a short time frame. A successful exploit could allow the attacker to cause a NULL pointer access that results in a reload of the affected device.
A vulnerability in Cisco Aironet Access Point (AP) Software could allow an unauthenticated, remote attacker to cause an affected device to reload. The vulnerability is due to improper handling of clients that are trying to connect to the AP. An attacker could exploit this vulnerability by sending authentication requests from multiple clients to an affected device. A successful exploit could allow the attacker to cause the affected device to reload.
A vulnerability in the quality of service (QoS) feature of Cisco Aironet Series Access Points (APs) could allow an authenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to improper input validation on QoS fields within Wi-Fi frames by the affected device. An attacker could exploit this vulnerability by sending malformed Wi-Fi frames to an affected device. A successful exploit could allow the attacker to cause the affected device to crash, resulting in a DoS condition.
A vulnerability in the CLI of Cisco Aironet Series Access Points (APs) could allow an authenticated, local attacker to gain access to the underlying Linux operating system (OS) without the proper authentication. The attacker would need valid administrator device credentials. The vulnerability is due to improper validation of user-supplied input for certain CLI commands. An attacker could exploit this vulnerability by authenticating to an affected device and submitting crafted input for a CLI command. A successful exploit could allow the attacker to obtain access to the underlying Linux OS without proper authentication.
A vulnerability in the internal packet processing of Cisco Aironet Series Access Points (APs) could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected AP if the switch interface where the AP is connected has port security configured. The vulnerability exists because the AP forwards some malformed wireless client packets outside of the Control and Provisioning of Wireless Access Points (CAPWAP) tunnel. An attacker could exploit this vulnerability by sending crafted wireless packets to an affected AP. A successful exploit could allow the attacker to trigger a security violation on the adjacent switch port, which could result in a DoS condition. Note: Though the Common Vulnerability Scoring System (CVSS) score corresponds to a High Security Impact Rating (SIR), this vulnerability is considered Medium because a workaround is available and exploitation requires a specific switch configuration. There are workarounds that address this vulnerability.