In the Linux kernel, the following vulnerability has been resolved:
parisc: Clear stale IIR value on instruction access rights trap
When a trap 7 (Instruction access rights) occurs, this means the CPU
couldn't execute an instruction due to missing execute permissions on
the memory region. In this case it seems the CPU didn't even fetched
the instruction from memory and thus did not store it in the cr19 (IIR)
register before calling the trap handler. So, the trap handler will find
some random old stale value in cr19.
This patch simply overwrites the stale IIR value with a constant magic
"bad food" value (0xbaadf00d), in the hope people don't start to try to
understand the various random IIR values in trap 7 dumps.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid potential deadlock
Using f2fs_trylock_op() in f2fs_write_compressed_pages() to avoid potential
deadlock like we did in f2fs_write_single_data_page().
In the Linux kernel, the following vulnerability has been resolved:
HID: usbhid: fix info leak in hid_submit_ctrl
In hid_submit_ctrl(), the way of calculating the report length doesn't
take into account that report->size can be zero. When running the
syzkaller reproducer, a report of size 0 causes hid_submit_ctrl) to
calculate transfer_buffer_length as 16384. When this urb is passed to
the usb core layer, KMSAN reports an info leak of 16384 bytes.
To fix this, first modify hid_report_len() to account for the zero
report size case by using DIV_ROUND_UP for the division. Then, call it
from hid_submit_ctrl().
In the Linux kernel, the following vulnerability has been resolved:
ext4: regenerate buddy after block freeing failed if under fc replay
This mostly reverts commit 6bd97bf273bd ("ext4: remove redundant
mb_regenerate_buddy()") and reintroduces mb_regenerate_buddy(). Based on
code in mb_free_blocks(), fast commit replay can end up marking as free
blocks that are already marked as such. This causes corruption of the
buddy bitmap so we need to regenerate it in that case.
In the Linux kernel, the following vulnerability has been resolved:
net: hso: fix NULL-deref on disconnect regression
Commit 8a12f8836145 ("net: hso: fix null-ptr-deref during tty device
unregistration") fixed the racy minor allocation reported by syzbot, but
introduced an unconditional NULL-pointer dereference on every disconnect
instead.
Specifically, the serial device table must no longer be accessed after
the minor has been released by hso_serial_tty_unregister().
In the Linux kernel, the following vulnerability has been resolved:
block: add check that partition length needs to be aligned with block size
Before calling add partition or resize partition, there is no check
on whether the length is aligned with the logical block size.
If the logical block size of the disk is larger than 512 bytes,
then the partition size maybe not the multiple of the logical block size,
and when the last sector is read, bio_truncate() will adjust the bio size,
resulting in an IO error if the size of the read command is smaller than
the logical block size.If integrity data is supported, this will also
result in a null pointer dereference when calling bio_integrity_free.
In the Linux kernel, the following vulnerability has been resolved:
bpf: fix check for attempt to corrupt spilled pointer
When register is spilled onto a stack as a 1/2/4-byte register, we set
slot_type[BPF_REG_SIZE - 1] (plus potentially few more below it,
depending on actual spill size). So to check if some stack slot has
spilled register we need to consult slot_type[7], not slot_type[0].
To avoid the need to remember and double-check this in the future, just
use is_spilled_reg() helper.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: validate mech token in session setup
If client send invalid mech token in session setup request, ksmbd
validate and make the error if it is invalid.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix re-attachment branch in bpf_tracing_prog_attach
The following case can cause a crash due to missing attach_btf:
1) load rawtp program
2) load fentry program with rawtp as target_fd
3) create tracing link for fentry program with target_fd = 0
4) repeat 3
In the end we have:
- prog->aux->dst_trampoline == NULL
- tgt_prog == NULL (because we did not provide target_fd to link_create)
- prog->aux->attach_btf == NULL (the program was loaded with attach_prog_fd=X)
- the program was loaded for tgt_prog but we have no way to find out which one
BUG: kernel NULL pointer dereference, address: 0000000000000058
Call Trace:
<TASK>
? __die+0x20/0x70
? page_fault_oops+0x15b/0x430
? fixup_exception+0x22/0x330
? exc_page_fault+0x6f/0x170
? asm_exc_page_fault+0x22/0x30
? bpf_tracing_prog_attach+0x279/0x560
? btf_obj_id+0x5/0x10
bpf_tracing_prog_attach+0x439/0x560
__sys_bpf+0x1cf4/0x2de0
__x64_sys_bpf+0x1c/0x30
do_syscall_64+0x41/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Return -EINVAL in this situation.
In the Linux kernel, the following vulnerability has been resolved:
apparmor: avoid crash when parsed profile name is empty
When processing a packed profile in unpack_profile() described like
"profile :ns::samba-dcerpcd /usr/lib*/samba/{,samba/}samba-dcerpcd {...}"
a string ":samba-dcerpcd" is unpacked as a fully-qualified name and then
passed to aa_splitn_fqname().
aa_splitn_fqname() treats ":samba-dcerpcd" as only containing a namespace.
Thus it returns NULL for tmpname, meanwhile tmpns is non-NULL. Later
aa_alloc_profile() crashes as the new profile name is NULL now.
general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 6 PID: 1657 Comm: apparmor_parser Not tainted 6.7.0-rc2-dirty #16
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
RIP: 0010:strlen+0x1e/0xa0
Call Trace:
<TASK>
? strlen+0x1e/0xa0
aa_policy_init+0x1bb/0x230
aa_alloc_profile+0xb1/0x480
unpack_profile+0x3bc/0x4960
aa_unpack+0x309/0x15e0
aa_replace_profiles+0x213/0x33c0
policy_update+0x261/0x370
profile_replace+0x20e/0x2a0
vfs_write+0x2af/0xe00
ksys_write+0x126/0x250
do_syscall_64+0x46/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
</TASK>
---[ end trace 0000000000000000 ]---
RIP: 0010:strlen+0x1e/0xa0
It seems such behaviour of aa_splitn_fqname() is expected and checked in
other places where it is called (e.g. aa_remove_profiles). Well, there
is an explicit comment "a ns name without a following profile is allowed"
inside.
AFAICS, nothing can prevent unpacked "name" to be in form like
":samba-dcerpcd" - it is passed from userspace.
Deny the whole profile set replacement in such case and inform user with
EPROTO and an explaining message.
Found by Linux Verification Center (linuxtesting.org).