In the Linux kernel, the following vulnerability has been resolved:
xhci: handle isoc Babble and Buffer Overrun events properly
xHCI 4.9 explicitly forbids assuming that the xHC has released its
ownership of a multi-TRB TD when it reports an error on one of the
early TRBs. Yet the driver makes such assumption and releases the TD,
allowing the remaining TRBs to be freed or overwritten by new TDs.
The xHC should also report completion of the final TRB due to its IOC
flag being set by us, regardless of prior errors. This event cannot
be recognized if the TD has already been freed earlier, resulting in
"Transfer event TRB DMA ptr not part of current TD" error message.
Fix this by reusing the logic for processing isoc Transaction Errors.
This also handles hosts which fail to report the final completion.
Fix transfer length reporting on Babble errors. They may be caused by
device malfunction, no guarantee that the buffer has been filled.
In the Linux kernel, the following vulnerability has been resolved:
um: time-travel: fix time corruption
In 'basic' time-travel mode (without =inf-cpu or =ext), we
still get timer interrupts. These can happen at arbitrary
points in time, i.e. while in timer_read(), which pushes
time forward just a little bit. Then, if we happen to get
the interrupt after calculating the new time to push to,
but before actually finishing that, the interrupt will set
the time to a value that's incompatible with the forward,
and we'll crash because time goes backwards when we do the
forwarding.
Fix this by reading the time_travel_time, calculating the
adjustment, and doing the adjustment all with interrupts
disabled.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix disable_otg_wa logic
[Why]
When switching to another HDMI mode, we are unnecesarilly
disabling/enabling FIFO causing both HPO and DIG registers to be set at
the same time when only HPO is supposed to be set.
This can lead to a system hang the next time we change refresh rates as
there are cases when we don't disable OTG/FIFO but FIFO is enabled when
it isn't supposed to be.
[How]
Removing the enable/disable FIFO entirely.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix late derefrence 'dsc' check in 'link_set_dsc_pps_packet()'
In link_set_dsc_pps_packet(), 'struct display_stream_compressor *dsc'
was dereferenced in a DC_LOGGER_INIT(dsc->ctx->logger); before the 'dsc'
NULL pointer check.
Fixes the below:
drivers/gpu/drm/amd/amdgpu/../display/dc/link/link_dpms.c:905 link_set_dsc_pps_packet() warn: variable dereferenced before check 'dsc' (see line 903)
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix variable deferencing before NULL check in edp_setup_replay()
In edp_setup_replay(), 'struct dc *dc' & 'struct dmub_replay *replay'
was dereferenced before the pointer 'link' & 'replay' NULL check.
Fixes the below:
drivers/gpu/drm/amd/amdgpu/../display/dc/link/protocols/link_edp_panel_control.c:947 edp_setup_replay() warn: variable dereferenced before check 'link' (see line 933)
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Refactor DMCUB enter/exit idle interface
[Why]
We can hang in place trying to send commands when the DMCUB isn't
powered on.
[How]
We need to exit out of the idle state prior to sending a command,
but the process that performs the exit also invokes a command itself.
Fixing this issue involves the following:
1. Using a software state to track whether or not we need to start
the process to exit idle or notify idle.
It's possible for the hardware to have exited an idle state without
driver knowledge, but entering one is always restricted to a driver
allow - which makes the SW state vs HW state mismatch issue purely one
of optimization, which should seldomly be hit, if at all.
2. Refactor any instances of exit/notify idle to use a single wrapper
that maintains this SW state.
This works simialr to dc_allow_idle_optimizations, but works at the
DMCUB level and makes sure the state is marked prior to any notify/exit
idle so we don't enter an infinite loop.
3. Make sure we exit out of idle prior to sending any commands or
waiting for DMCUB idle.
This patch takes care of 1/2. A future patch will take care of wrapping
DMCUB command submission with calls to this new interface.
In the Linux kernel, the following vulnerability has been resolved:
thermal: intel: hfi: Add syscore callbacks for system-wide PM
The kernel allocates a memory buffer and provides its location to the
hardware, which uses it to update the HFI table. This allocation occurs
during boot and remains constant throughout runtime.
When resuming from hibernation, the restore kernel allocates a second
memory buffer and reprograms the HFI hardware with the new location as
part of a normal boot. The location of the second memory buffer may
differ from the one allocated by the image kernel.
When the restore kernel transfers control to the image kernel, its HFI
buffer becomes invalid, potentially leading to memory corruption if the
hardware writes to it (the hardware continues to use the buffer from the
restore kernel).
It is also possible that the hardware "forgets" the address of the memory
buffer when resuming from "deep" suspend. Memory corruption may also occur
in such a scenario.
To prevent the described memory corruption, disable HFI when preparing to
suspend or hibernate. Enable it when resuming.
Add syscore callbacks to handle the package of the boot CPU (packages of
non-boot CPUs are handled via CPU offline). Syscore ops always run on the
boot CPU. Additionally, HFI only needs to be disabled during "deep" suspend
and hibernation. Syscore ops only run in these cases.
[ rjw: Comment adjustment, subject and changelog edits ]