In the Linux kernel, the following vulnerability has been resolved:
ALSA: firewire-lib: fix uninitialized flag for AV/C deferred transaction
AV/C deferred transaction was supported at a commit 00a7bb81c20f ("ALSA:
firewire-lib: Add support for deferred transaction") while 'deferrable'
flag can be uninitialized for non-control/notify AV/C transactions.
UBSAN reports it:
kernel: ================================================================================
kernel: UBSAN: invalid-load in /build/linux-aa0B4d/linux-5.15.0/sound/firewire/fcp.c:363:9
kernel: load of value 158 is not a valid value for type '_Bool'
kernel: CPU: 3 PID: 182227 Comm: irq/35-firewire Tainted: P OE 5.15.0-18-generic #18-Ubuntu
kernel: Hardware name: Gigabyte Technology Co., Ltd. AX370-Gaming 5/AX370-Gaming 5, BIOS F42b 08/01/2019
kernel: Call Trace:
kernel: <IRQ>
kernel: show_stack+0x52/0x58
kernel: dump_stack_lvl+0x4a/0x5f
kernel: dump_stack+0x10/0x12
kernel: ubsan_epilogue+0x9/0x45
kernel: __ubsan_handle_load_invalid_value.cold+0x44/0x49
kernel: fcp_response.part.0.cold+0x1a/0x2b [snd_firewire_lib]
kernel: fcp_response+0x28/0x30 [snd_firewire_lib]
kernel: fw_core_handle_request+0x230/0x3d0 [firewire_core]
kernel: handle_ar_packet+0x1d9/0x200 [firewire_ohci]
kernel: ? handle_ar_packet+0x1d9/0x200 [firewire_ohci]
kernel: ? transmit_complete_callback+0x9f/0x120 [firewire_core]
kernel: ar_context_tasklet+0xa8/0x2e0 [firewire_ohci]
kernel: tasklet_action_common.constprop.0+0xea/0xf0
kernel: tasklet_action+0x22/0x30
kernel: __do_softirq+0xd9/0x2e3
kernel: ? irq_finalize_oneshot.part.0+0xf0/0xf0
kernel: do_softirq+0x75/0xa0
kernel: </IRQ>
kernel: <TASK>
kernel: __local_bh_enable_ip+0x50/0x60
kernel: irq_forced_thread_fn+0x7e/0x90
kernel: irq_thread+0xba/0x190
kernel: ? irq_thread_fn+0x60/0x60
kernel: kthread+0x11e/0x140
kernel: ? irq_thread_check_affinity+0xf0/0xf0
kernel: ? set_kthread_struct+0x50/0x50
kernel: ret_from_fork+0x22/0x30
kernel: </TASK>
kernel: ================================================================================
This commit fixes the bug. The bug has no disadvantage for the non-
control/notify AV/C transactions since the flag has an effect for AV/C
response with INTERIM (0x0f) status which is not used for the transactions
in AV/C general specification.
In the Linux kernel, the following vulnerability has been resolved:
ath9k_htc: fix uninit value bugs
Syzbot reported 2 KMSAN bugs in ath9k. All of them are caused by missing
field initialization.
In htc_connect_service() svc_meta_len and pad are not initialized. Based
on code it looks like in current skb there is no service data, so simply
initialize svc_meta_len to 0.
htc_issue_send() does not initialize htc_frame_hdr::control array. Based
on firmware code, it will initialize it by itself, so simply zero whole
array to make KMSAN happy
Fail logs:
BUG: KMSAN: kernel-usb-infoleak in usb_submit_urb+0x6c1/0x2aa0 drivers/usb/core/urb.c:430
usb_submit_urb+0x6c1/0x2aa0 drivers/usb/core/urb.c:430
hif_usb_send_regout drivers/net/wireless/ath/ath9k/hif_usb.c:127 [inline]
hif_usb_send+0x5f0/0x16f0 drivers/net/wireless/ath/ath9k/hif_usb.c:479
htc_issue_send drivers/net/wireless/ath/ath9k/htc_hst.c:34 [inline]
htc_connect_service+0x143e/0x1960 drivers/net/wireless/ath/ath9k/htc_hst.c:275
...
Uninit was created at:
slab_post_alloc_hook mm/slab.h:524 [inline]
slab_alloc_node mm/slub.c:3251 [inline]
__kmalloc_node_track_caller+0xe0c/0x1510 mm/slub.c:4974
kmalloc_reserve net/core/skbuff.c:354 [inline]
__alloc_skb+0x545/0xf90 net/core/skbuff.c:426
alloc_skb include/linux/skbuff.h:1126 [inline]
htc_connect_service+0x1029/0x1960 drivers/net/wireless/ath/ath9k/htc_hst.c:258
...
Bytes 4-7 of 18 are uninitialized
Memory access of size 18 starts at ffff888027377e00
BUG: KMSAN: kernel-usb-infoleak in usb_submit_urb+0x6c1/0x2aa0 drivers/usb/core/urb.c:430
usb_submit_urb+0x6c1/0x2aa0 drivers/usb/core/urb.c:430
hif_usb_send_regout drivers/net/wireless/ath/ath9k/hif_usb.c:127 [inline]
hif_usb_send+0x5f0/0x16f0 drivers/net/wireless/ath/ath9k/hif_usb.c:479
htc_issue_send drivers/net/wireless/ath/ath9k/htc_hst.c:34 [inline]
htc_connect_service+0x143e/0x1960 drivers/net/wireless/ath/ath9k/htc_hst.c:275
...
Uninit was created at:
slab_post_alloc_hook mm/slab.h:524 [inline]
slab_alloc_node mm/slub.c:3251 [inline]
__kmalloc_node_track_caller+0xe0c/0x1510 mm/slub.c:4974
kmalloc_reserve net/core/skbuff.c:354 [inline]
__alloc_skb+0x545/0xf90 net/core/skbuff.c:426
alloc_skb include/linux/skbuff.h:1126 [inline]
htc_connect_service+0x1029/0x1960 drivers/net/wireless/ath/ath9k/htc_hst.c:258
...
Bytes 16-17 of 18 are uninitialized
Memory access of size 18 starts at ffff888027377e00
In the Linux kernel, the following vulnerability has been resolved:
kernel/resource: fix kfree() of bootmem memory again
Since commit ebff7d8f270d ("mem hotunplug: fix kfree() of bootmem
memory"), we could get a resource allocated during boot via
alloc_resource(). And it's required to release the resource using
free_resource(). Howerver, many people use kfree directly which will
result in kernel BUG. In order to fix this without fixing every call
site, just leak a couple of bytes in such corner case.
In the Linux kernel, the following vulnerability has been resolved:
mxser: fix xmit_buf leak in activate when LSR == 0xff
When LSR is 0xff in ->activate() (rather unlike), we return an error.
Provided ->shutdown() is not called when ->activate() fails, nothing
actually frees the buffer in this case.
Fix this by properly freeing the buffer in a designated label. We jump
there also from the "!info->type" if now too.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: Fix use after free in remove_phb_dynamic()
In remove_phb_dynamic() we use &phb->io_resource, after we've called
device_unregister(&host_bridge->dev). But the unregister may have freed
phb, because pcibios_free_controller_deferred() is the release function
for the host_bridge.
If there are no outstanding references when we call device_unregister()
then phb will be freed out from under us.
This has gone mainly unnoticed, but with slub_debug and page_poison
enabled it can lead to a crash:
PID: 7574 TASK: c0000000d492cb80 CPU: 13 COMMAND: "drmgr"
#0 [c0000000e4f075a0] crash_kexec at c00000000027d7dc
#1 [c0000000e4f075d0] oops_end at c000000000029608
#2 [c0000000e4f07650] __bad_page_fault at c0000000000904b4
#3 [c0000000e4f076c0] do_bad_slb_fault at c00000000009a5a8
#4 [c0000000e4f076f0] data_access_slb_common_virt at c000000000008b30
Data SLB Access [380] exception frame:
R0: c000000000167250 R1: c0000000e4f07a00 R2: c000000002a46100
R3: c000000002b39ce8 R4: 00000000000000c0 R5: 00000000000000a9
R6: 3894674d000000c0 R7: 0000000000000000 R8: 00000000000000ff
R9: 0000000000000100 R10: 6b6b6b6b6b6b6b6b R11: 0000000000008000
R12: c00000000023da80 R13: c0000009ffd38b00 R14: 0000000000000000
R15: 000000011c87f0f0 R16: 0000000000000006 R17: 0000000000000003
R18: 0000000000000002 R19: 0000000000000004 R20: 0000000000000005
R21: 000000011c87ede8 R22: 000000011c87c5a8 R23: 000000011c87d3a0
R24: 0000000000000000 R25: 0000000000000001 R26: c0000000e4f07cc8
R27: c00000004d1cc400 R28: c0080000031d00e8 R29: c00000004d23d800
R30: c00000004d1d2400 R31: c00000004d1d2540
NIP: c000000000167258 MSR: 8000000000009033 OR3: c000000000e9f474
CTR: 0000000000000000 LR: c000000000167250 XER: 0000000020040003
CCR: 0000000024088420 MQ: 0000000000000000 DAR: 6b6b6b6b6b6b6ba3
DSISR: c0000000e4f07920 Syscall Result: fffffffffffffff2
[NIP : release_resource+56]
[LR : release_resource+48]
#5 [c0000000e4f07a00] release_resource at c000000000167258 (unreliable)
#6 [c0000000e4f07a30] remove_phb_dynamic at c000000000105648
#7 [c0000000e4f07ab0] dlpar_remove_slot at c0080000031a09e8 [rpadlpar_io]
#8 [c0000000e4f07b50] remove_slot_store at c0080000031a0b9c [rpadlpar_io]
#9 [c0000000e4f07be0] kobj_attr_store at c000000000817d8c
#10 [c0000000e4f07c00] sysfs_kf_write at c00000000063e504
#11 [c0000000e4f07c20] kernfs_fop_write_iter at c00000000063d868
#12 [c0000000e4f07c70] new_sync_write at c00000000054339c
#13 [c0000000e4f07d10] vfs_write at c000000000546624
#14 [c0000000e4f07d60] ksys_write at c0000000005469f4
#15 [c0000000e4f07db0] system_call_exception at c000000000030840
#16 [c0000000e4f07e10] system_call_vectored_common at c00000000000c168
To avoid it, we can take a reference to the host_bridge->dev until we're
done using phb. Then when we drop the reference the phb will be freed.
In the Linux kernel, the following vulnerability has been resolved:
af_netlink: Fix shift out of bounds in group mask calculation
When a netlink message is received, netlink_recvmsg() fills in the address
of the sender. One of the fields is the 32-bit bitfield nl_groups, which
carries the multicast group on which the message was received. The least
significant bit corresponds to group 1, and therefore the highest group
that the field can represent is 32. Above that, the UB sanitizer flags the
out-of-bounds shift attempts.
Which bits end up being set in such case is implementation defined, but
it's either going to be a wrong non-zero value, or zero, which is at least
not misleading. Make the latter choice deterministic by always setting to 0
for higher-numbered multicast groups.
To get information about membership in groups >= 32, userspace is expected
to use nl_pktinfo control messages[0], which are enabled by NETLINK_PKTINFO
socket option.
[0] https://lwn.net/Articles/147608/
The way to trigger this issue is e.g. through monitoring the BRVLAN group:
# bridge monitor vlan &
# ip link add name br type bridge
Which produces the following citation:
UBSAN: shift-out-of-bounds in net/netlink/af_netlink.c:162:19
shift exponent 32 is too large for 32-bit type 'int'
In the Linux kernel, the following vulnerability has been resolved:
LSM: general protection fault in legacy_parse_param
The usual LSM hook "bail on fail" scheme doesn't work for cases where
a security module may return an error code indicating that it does not
recognize an input. In this particular case Smack sees a mount option
that it recognizes, and returns 0. A call to a BPF hook follows, which
returns -ENOPARAM, which confuses the caller because Smack has processed
its data.
The SELinux hook incorrectly returns 1 on success. There was a time
when this was correct, however the current expectation is that it
return 0 on success. This is repaired.
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: nomadik: Add missing of_node_put() in nmk_pinctrl_probe
This node pointer is returned by of_parse_phandle() with refcount
incremented in this function. Calling of_node_put() to avoid
the refcount leak.