In the Linux kernel, the following vulnerability has been resolved:
ext4: fix bug on in ext4_es_cache_extent as ext4_split_extent_at failed
We got follow bug_on when run fsstress with injecting IO fault:
[130747.323114] kernel BUG at fs/ext4/extents_status.c:762!
[130747.323117] Internal error: Oops - BUG: 0 [#1] SMP
......
[130747.334329] Call trace:
[130747.334553] ext4_es_cache_extent+0x150/0x168 [ext4]
[130747.334975] ext4_cache_extents+0x64/0xe8 [ext4]
[130747.335368] ext4_find_extent+0x300/0x330 [ext4]
[130747.335759] ext4_ext_map_blocks+0x74/0x1178 [ext4]
[130747.336179] ext4_map_blocks+0x2f4/0x5f0 [ext4]
[130747.336567] ext4_mpage_readpages+0x4a8/0x7a8 [ext4]
[130747.336995] ext4_readpage+0x54/0x100 [ext4]
[130747.337359] generic_file_buffered_read+0x410/0xae8
[130747.337767] generic_file_read_iter+0x114/0x190
[130747.338152] ext4_file_read_iter+0x5c/0x140 [ext4]
[130747.338556] __vfs_read+0x11c/0x188
[130747.338851] vfs_read+0x94/0x150
[130747.339110] ksys_read+0x74/0xf0
This patch's modification is according to Jan Kara's suggestion in:
https://patchwork.ozlabs.org/project/linux-ext4/patch/20210428085158.3728201-1-yebin10@huawei.com/
"I see. Now I understand your patch. Honestly, seeing how fragile is trying
to fix extent tree after split has failed in the middle, I would probably
go even further and make sure we fix the tree properly in case of ENOSPC
and EDQUOT (those are easily user triggerable). Anything else indicates a
HW problem or fs corruption so I'd rather leave the extent tree as is and
don't try to fix it (which also means we will not create overlapping
extents)."
In the Linux kernel, the following vulnerability has been resolved:
PM: sleep: Fix possible deadlocks in core system-wide PM code
It is reported that in low-memory situations the system-wide resume core
code deadlocks, because async_schedule_dev() executes its argument
function synchronously if it cannot allocate memory (and not only in
that case) and that function attempts to acquire a mutex that is already
held. Executing the argument function synchronously from within
dpm_async_fn() may also be problematic for ordering reasons (it may
cause a consumer device's resume callback to be invoked before a
requisite supplier device's one, for example).
Address this by changing the code in question to use
async_schedule_dev_nocall() for scheduling the asynchronous
execution of device suspend and resume functions and to directly
run them synchronously if async_schedule_dev_nocall() returns false.
In the Linux kernel, the following vulnerability has been resolved:
drm: Don't unref the same fb many times by mistake due to deadlock handling
If we get a deadlock after the fb lookup in drm_mode_page_flip_ioctl()
we proceed to unref the fb and then retry the whole thing from the top.
But we forget to reset the fb pointer back to NULL, and so if we then
get another error during the retry, before the fb lookup, we proceed
the unref the same fb again without having gotten another reference.
The end result is that the fb will (eventually) end up being freed
while it's still in use.
Reset fb to NULL once we've unreffed it to avoid doing it again
until we've done another fb lookup.
This turned out to be pretty easy to hit on a DG2 when doing async
flips (and CONFIG_DEBUG_WW_MUTEX_SLOWPATH=y). The first symptom I
saw that drm_closefb() simply got stuck in a busy loop while walking
the framebuffer list. Fortunately I was able to convince it to oops
instead, and from there it was easier to track down the culprit.
In the Linux kernel, the following vulnerability has been resolved:
UBSAN: array-index-out-of-bounds in dtSplitRoot
Syzkaller reported the following issue:
oop0: detected capacity change from 0 to 32768
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dtree.c:1971:9
index -2 is out of range for type 'struct dtslot [128]'
CPU: 0 PID: 3613 Comm: syz-executor270 Not tainted 6.0.0-syzkaller-09423-g493ffd6605b2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:151 [inline]
__ubsan_handle_out_of_bounds+0xdb/0x130 lib/ubsan.c:283
dtSplitRoot+0x8d8/0x1900 fs/jfs/jfs_dtree.c:1971
dtSplitUp fs/jfs/jfs_dtree.c:985 [inline]
dtInsert+0x1189/0x6b80 fs/jfs/jfs_dtree.c:863
jfs_mkdir+0x757/0xb00 fs/jfs/namei.c:270
vfs_mkdir+0x3b3/0x590 fs/namei.c:4013
do_mkdirat+0x279/0x550 fs/namei.c:4038
__do_sys_mkdirat fs/namei.c:4053 [inline]
__se_sys_mkdirat fs/namei.c:4051 [inline]
__x64_sys_mkdirat+0x85/0x90 fs/namei.c:4051
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7fcdc0113fd9
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffeb8bc67d8 EFLAGS: 00000246 ORIG_RAX: 0000000000000102
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fcdc0113fd9
RDX: 0000000000000000 RSI: 0000000020000340 RDI: 0000000000000003
RBP: 00007fcdc00d37a0 R08: 0000000000000000 R09: 00007fcdc00d37a0
R10: 00005555559a72c0 R11: 0000000000000246 R12: 00000000f8008000
R13: 0000000000000000 R14: 00083878000000f8 R15: 0000000000000000
</TASK>
The issue is caused when the value of fsi becomes less than -1.
The check to break the loop when fsi value becomes -1 is present
but syzbot was able to produce value less than -1 which cause the error.
This patch simply add the change for the values less than 0.
The patch is tested via syzbot.
In the Linux kernel, the following vulnerability has been resolved:
FS:JFS:UBSAN:array-index-out-of-bounds in dbAdjTree
Syzkaller reported the following issue:
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:2867:6
index 196694 is out of range for type 's8[1365]' (aka 'signed char[1365]')
CPU: 1 PID: 109 Comm: jfsCommit Not tainted 6.6.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:217 [inline]
__ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348
dbAdjTree+0x474/0x4f0 fs/jfs/jfs_dmap.c:2867
dbJoin+0x210/0x2d0 fs/jfs/jfs_dmap.c:2834
dbFreeBits+0x4eb/0xda0 fs/jfs/jfs_dmap.c:2331
dbFreeDmap fs/jfs/jfs_dmap.c:2080 [inline]
dbFree+0x343/0x650 fs/jfs/jfs_dmap.c:402
txFreeMap+0x798/0xd50 fs/jfs/jfs_txnmgr.c:2534
txUpdateMap+0x342/0x9e0
txLazyCommit fs/jfs/jfs_txnmgr.c:2664 [inline]
jfs_lazycommit+0x47a/0xb70 fs/jfs/jfs_txnmgr.c:2732
kthread+0x2d3/0x370 kernel/kthread.c:388
ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304
</TASK>
================================================================================
Kernel panic - not syncing: UBSAN: panic_on_warn set ...
CPU: 1 PID: 109 Comm: jfsCommit Not tainted 6.6.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
panic+0x30f/0x770 kernel/panic.c:340
check_panic_on_warn+0x82/0xa0 kernel/panic.c:236
ubsan_epilogue lib/ubsan.c:223 [inline]
__ubsan_handle_out_of_bounds+0x13c/0x150 lib/ubsan.c:348
dbAdjTree+0x474/0x4f0 fs/jfs/jfs_dmap.c:2867
dbJoin+0x210/0x2d0 fs/jfs/jfs_dmap.c:2834
dbFreeBits+0x4eb/0xda0 fs/jfs/jfs_dmap.c:2331
dbFreeDmap fs/jfs/jfs_dmap.c:2080 [inline]
dbFree+0x343/0x650 fs/jfs/jfs_dmap.c:402
txFreeMap+0x798/0xd50 fs/jfs/jfs_txnmgr.c:2534
txUpdateMap+0x342/0x9e0
txLazyCommit fs/jfs/jfs_txnmgr.c:2664 [inline]
jfs_lazycommit+0x47a/0xb70 fs/jfs/jfs_txnmgr.c:2732
kthread+0x2d3/0x370 kernel/kthread.c:388
ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304
</TASK>
Kernel Offset: disabled
Rebooting in 86400 seconds..
The issue is caused when the value of lp becomes greater than
CTLTREESIZE which is the max size of stree. Adding a simple check
solves this issue.
Dave:
As the function returns a void, good error handling
would require a more intrusive code reorganization, so I modified
Osama's patch at use WARN_ON_ONCE for lack of a cleaner option.
The patch is tested via syzbot.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/lib: Validate size for vector operations
Some of the fp/vmx code in sstep.c assume a certain maximum size for the
instructions being emulated. The size of those operations however is
determined separately in analyse_instr().
Add a check to validate the assumption on the maximum size of the
operations, so as to prevent any unintended kernel stack corruption.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/mm: Fix null-pointer dereference in pgtable_cache_add
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity.
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix uaf in jfs_evict_inode
When the execution of diMount(ipimap) fails, the object ipimap that has been
released may be accessed in diFreeSpecial(). Asynchronous ipimap release occurs
when rcu_core() calls jfs_free_node().
Therefore, when diMount(ipimap) fails, sbi->ipimap should not be initialized as
ipimap.
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix array-index-out-of-bounds in dbAdjTree
Currently there is a bound check missing in the dbAdjTree while
accessing the dmt_stree. To add the required check added the bool is_ctl
which is required to determine the size as suggest in the following
commit.
https://lore.kernel.org/linux-kernel-mentees/f9475918-2186-49b8-b801-6f0f9e75f4fa@oracle.com/