In the Linux kernel, the following vulnerability has been resolved:
mISDN: fix possible memory leak in mISDN_dsp_element_register()
Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's
bus_id string array"), the name of device is allocated dynamically,
use put_device() to give up the reference, so that the name can be
freed in kobject_cleanup() when the refcount is 0.
The 'entry' is going to be freed in mISDN_dsp_dev_release(), so the
kfree() is removed. list_del() is called in mISDN_dsp_dev_release(),
so it need be initialized.
In the Linux kernel, the following vulnerability has been resolved:
ata: libata-transport: fix error handling in ata_tdev_add()
In ata_tdev_add(), the return value of transport_add_device() is
not checked. As a result, it causes null-ptr-deref while removing
the module, because transport_remove_device() is called to remove
the device that was not added.
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0
CPU: 13 PID: 13603 Comm: rmmod Kdump: loaded Tainted: G W 6.1.0-rc3+ #36
pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : device_del+0x48/0x3a0
lr : device_del+0x44/0x3a0
Call trace:
device_del+0x48/0x3a0
attribute_container_class_device_del+0x28/0x40
transport_remove_classdev+0x60/0x7c
attribute_container_device_trigger+0x118/0x120
transport_remove_device+0x20/0x30
ata_tdev_delete+0x24/0x50 [libata]
ata_tlink_delete+0x40/0xa0 [libata]
ata_tport_delete+0x2c/0x60 [libata]
ata_port_detach+0x148/0x1b0 [libata]
ata_pci_remove_one+0x50/0x80 [libata]
ahci_remove_one+0x4c/0x8c [ahci]
Fix this by checking and handling return value of transport_add_device()
in ata_tdev_add(). In the error path, device_del() is called to delete
the device which was added earlier in this function, and ata_tdev_free()
is called to free ata_dev.
In the Linux kernel, the following vulnerability has been resolved:
ata: libata-transport: fix error handling in ata_tlink_add()
In ata_tlink_add(), the return value of transport_add_device() is
not checked. As a result, it causes null-ptr-deref while removing
the module, because transport_remove_device() is called to remove
the device that was not added.
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0
CPU: 33 PID: 13850 Comm: rmmod Kdump: loaded Tainted: G W 6.1.0-rc3+ #12
pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : device_del+0x48/0x39c
lr : device_del+0x44/0x39c
Call trace:
device_del+0x48/0x39c
attribute_container_class_device_del+0x28/0x40
transport_remove_classdev+0x60/0x7c
attribute_container_device_trigger+0x118/0x120
transport_remove_device+0x20/0x30
ata_tlink_delete+0x88/0xb0 [libata]
ata_tport_delete+0x2c/0x60 [libata]
ata_port_detach+0x148/0x1b0 [libata]
ata_pci_remove_one+0x50/0x80 [libata]
ahci_remove_one+0x4c/0x8c [ahci]
Fix this by checking and handling return value of transport_add_device()
in ata_tlink_add().
In the Linux kernel, the following vulnerability has been resolved:
ata: libata-transport: fix error handling in ata_tport_add()
In ata_tport_add(), the return value of transport_add_device() is
not checked. As a result, it causes null-ptr-deref while removing
the module, because transport_remove_device() is called to remove
the device that was not added.
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0
CPU: 12 PID: 13605 Comm: rmmod Kdump: loaded Tainted: G W 6.1.0-rc3+ #8
pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : device_del+0x48/0x39c
lr : device_del+0x44/0x39c
Call trace:
device_del+0x48/0x39c
attribute_container_class_device_del+0x28/0x40
transport_remove_classdev+0x60/0x7c
attribute_container_device_trigger+0x118/0x120
transport_remove_device+0x20/0x30
ata_tport_delete+0x34/0x60 [libata]
ata_port_detach+0x148/0x1b0 [libata]
ata_pci_remove_one+0x50/0x80 [libata]
ahci_remove_one+0x4c/0x8c [ahci]
Fix this by checking and handling return value of transport_add_device()
in ata_tport_add().
In the Linux kernel, the following vulnerability has been resolved:
net/x25: Fix skb leak in x25_lapb_receive_frame()
x25_lapb_receive_frame() using skb_copy() to get a private copy of
skb, the new skb should be freed in the undersized/fragmented skb
error handling path. Otherwise there is a memory leak.
In the Linux kernel, the following vulnerability has been resolved:
drbd: use after free in drbd_create_device()
The drbd_destroy_connection() frees the "connection" so use the _safe()
iterator to prevent a use after free.
In the Linux kernel, the following vulnerability has been resolved:
net: ena: Fix error handling in ena_init()
The ena_init() won't destroy workqueue created by
create_singlethread_workqueue() when pci_register_driver() failed.
Call destroy_workqueue() when pci_register_driver() failed to prevent the
resource leak.
In the Linux kernel, the following vulnerability has been resolved:
kcm: close race conditions on sk_receive_queue
sk->sk_receive_queue is protected by skb queue lock, but for KCM
sockets its RX path takes mux->rx_lock to protect more than just
skb queue. However, kcm_recvmsg() still only grabs the skb queue
lock, so race conditions still exist.
We can teach kcm_recvmsg() to grab mux->rx_lock too but this would
introduce a potential performance regression as struct kcm_mux can
be shared by multiple KCM sockets.
So we have to enforce skb queue lock in requeue_rx_msgs() and handle
skb peek case carefully in kcm_wait_data(). Fortunately,
skb_recv_datagram() already handles it nicely and is widely used by
other sockets, we can just switch to skb_recv_datagram() after
getting rid of the unnecessary sock lock in kcm_recvmsg() and
kcm_splice_read(). Side note: SOCK_DONE is not used by KCM sockets,
so it is safe to get rid of this check too.
I ran the original syzbot reproducer for 30 min without seeing any
issue.
In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix null pointer dereference in ftrace_add_mod()
The @ftrace_mod is allocated by kzalloc(), so both the members {prev,next}
of @ftrace_mode->list are NULL, it's not a valid state to call list_del().
If kstrdup() for @ftrace_mod->{func|module} fails, it goes to @out_free
tag and calls free_ftrace_mod() to destroy @ftrace_mod, then list_del()
will write prev->next and next->prev, where null pointer dereference
happens.
BUG: kernel NULL pointer dereference, address: 0000000000000008
Oops: 0002 [#1] PREEMPT SMP NOPTI
Call Trace:
<TASK>
ftrace_mod_callback+0x20d/0x220
? do_filp_open+0xd9/0x140
ftrace_process_regex.isra.51+0xbf/0x130
ftrace_regex_write.isra.52.part.53+0x6e/0x90
vfs_write+0xee/0x3a0
? __audit_filter_op+0xb1/0x100
? auditd_test_task+0x38/0x50
ksys_write+0xa5/0xe0
do_syscall_64+0x3a/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Kernel panic - not syncing: Fatal exception
So call INIT_LIST_HEAD() to initialize the list member to fix this issue.
In the Linux kernel, the following vulnerability has been resolved:
misc/vmw_vmci: fix an infoleak in vmci_host_do_receive_datagram()
`struct vmci_event_qp` allocated by qp_notify_peer() contains padding,
which may carry uninitialized data to the userspace, as observed by
KMSAN:
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user ./include/linux/instrumented.h:121
instrument_copy_to_user ./include/linux/instrumented.h:121
_copy_to_user+0x5f/0xb0 lib/usercopy.c:33
copy_to_user ./include/linux/uaccess.h:169
vmci_host_do_receive_datagram drivers/misc/vmw_vmci/vmci_host.c:431
vmci_host_unlocked_ioctl+0x33d/0x43d0 drivers/misc/vmw_vmci/vmci_host.c:925
vfs_ioctl fs/ioctl.c:51
...
Uninit was stored to memory at:
kmemdup+0x74/0xb0 mm/util.c:131
dg_dispatch_as_host drivers/misc/vmw_vmci/vmci_datagram.c:271
vmci_datagram_dispatch+0x4f8/0xfc0 drivers/misc/vmw_vmci/vmci_datagram.c:339
qp_notify_peer+0x19a/0x290 drivers/misc/vmw_vmci/vmci_queue_pair.c:1479
qp_broker_attach drivers/misc/vmw_vmci/vmci_queue_pair.c:1662
qp_broker_alloc+0x2977/0x2f30 drivers/misc/vmw_vmci/vmci_queue_pair.c:1750
vmci_qp_broker_alloc+0x96/0xd0 drivers/misc/vmw_vmci/vmci_queue_pair.c:1940
vmci_host_do_alloc_queuepair drivers/misc/vmw_vmci/vmci_host.c:488
vmci_host_unlocked_ioctl+0x24fd/0x43d0 drivers/misc/vmw_vmci/vmci_host.c:927
...
Local variable ev created at:
qp_notify_peer+0x54/0x290 drivers/misc/vmw_vmci/vmci_queue_pair.c:1456
qp_broker_attach drivers/misc/vmw_vmci/vmci_queue_pair.c:1662
qp_broker_alloc+0x2977/0x2f30 drivers/misc/vmw_vmci/vmci_queue_pair.c:1750
Bytes 28-31 of 48 are uninitialized
Memory access of size 48 starts at ffff888035155e00
Data copied to user address 0000000020000100
Use memset() to prevent the infoleaks.
Also speculatively fix qp_notify_peer_local(), which may suffer from the
same problem.