In the Linux kernel, the following vulnerability has been resolved:
staging: media: atomisp: Fix stack buffer overflow in gmin_get_var_int()
When gmin_get_config_var() calls efi.get_variable() and the EFI variable
is larger than the expected buffer size, two behaviors combine to create
a stack buffer overflow:
1. gmin_get_config_var() does not return the proper error code when
efi.get_variable() fails. It returns the stale 'ret' value from
earlier operations instead of indicating the EFI failure.
2. When efi.get_variable() returns EFI_BUFFER_TOO_SMALL, it updates
*out_len to the required buffer size but writes no data to the output
buffer. However, due to bug #1, gmin_get_var_int() believes the call
succeeded.
The caller gmin_get_var_int() then performs:
- Allocates val[CFG_VAR_NAME_MAX + 1] (65 bytes) on stack
- Calls gmin_get_config_var(dev, is_gmin, var, val, &len) with len=64
- If EFI variable is >64 bytes, efi.get_variable() sets len=required_size
- Due to bug #1, thinks call succeeded with len=required_size
- Executes val[len] = 0, writing past end of 65-byte stack buffer
This creates a stack buffer overflow when EFI variables are larger than
64 bytes. Since EFI variables can be controlled by firmware or system
configuration, this could potentially be exploited for code execution.
Fix the bug by returning proper error codes from gmin_get_config_var()
based on EFI status instead of stale 'ret' value.
The gmin_get_var_int() function is called during device initialization
for camera sensor configuration on Intel Bay Trail and Cherry Trail
platforms using the atomisp camera stack.
In the Linux kernel, the following vulnerability has been resolved:
sunrpc: fix handling of server side tls alerts
Scott Mayhew discovered a security exploit in NFS over TLS in
tls_alert_recv() due to its assumption it can read data from
the msg iterator's kvec..
kTLS implementation splits TLS non-data record payload between
the control message buffer (which includes the type such as TLS
aler or TLS cipher change) and the rest of the payload (say TLS
alert's level/description) which goes into the msg payload buffer.
This patch proposes to rework how control messages are setup and
used by sock_recvmsg().
If no control message structure is setup, kTLS layer will read and
process TLS data record types. As soon as it encounters a TLS control
message, it would return an error. At that point, NFS can setup a
kvec backed msg buffer and read in the control message such as a
TLS alert. Msg iterator can advance the kvec pointer as a part of
the copy process thus we need to revert the iterator before calling
into the tls_alert_recv.
In the Linux kernel, the following vulnerability has been resolved:
net/sched: mqprio: fix stack out-of-bounds write in tc entry parsing
TCA_MQPRIO_TC_ENTRY_INDEX is validated using
NLA_POLICY_MAX(NLA_U32, TC_QOPT_MAX_QUEUE), which allows the value
TC_QOPT_MAX_QUEUE (16). This leads to a 4-byte out-of-bounds stack
write in the fp[] array, which only has room for 16 elements (0–15).
Fix this by changing the policy to allow only up to TC_QOPT_MAX_QUEUE - 1.
In the Linux kernel, the following vulnerability has been resolved:
sunrpc: fix client side handling of tls alerts
A security exploit was discovered in NFS over TLS in tls_alert_recv
due to its assumption that there is valid data in the msghdr's
iterator's kvec.
Instead, this patch proposes the rework how control messages are
setup and used by sock_recvmsg().
If no control message structure is setup, kTLS layer will read and
process TLS data record types. As soon as it encounters a TLS control
message, it would return an error. At that point, NFS can setup a kvec
backed control buffer and read in the control message such as a TLS
alert. Scott found that a msg iterator can advance the kvec pointer
as a part of the copy process thus we need to revert the iterator
before calling into the tls_alert_recv.
In the Linux kernel, the following vulnerability has been resolved:
HID: core: Harden s32ton() against conversion to 0 bits
Testing by the syzbot fuzzer showed that the HID core gets a
shift-out-of-bounds exception when it tries to convert a 32-bit
quantity to a 0-bit quantity. Ideally this should never occur, but
there are buggy devices and some might have a report field with size
set to zero; we shouldn't reject the report or the device just because
of that.
Instead, harden the s32ton() routine so that it returns a reasonable
result instead of crashing when it is called with the number of bits
set to 0 -- the same as what snto32() does.
In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix bug due to prealloc collision
When userspace is using AF_RXRPC to provide a server, it has to preallocate
incoming calls and assign to them call IDs that will be used to thread
related recvmsg() and sendmsg() together. The preallocated call IDs will
automatically be attached to calls as they come in until the pool is empty.
To the kernel, the call IDs are just arbitrary numbers, but userspace can
use the call ID to hold a pointer to prepared structs. In any case, the
user isn't permitted to create two calls with the same call ID (call IDs
become available again when the call ends) and EBADSLT should result from
sendmsg() if an attempt is made to preallocate a call with an in-use call
ID.
However, the cleanup in the error handling will trigger both assertions in
rxrpc_cleanup_call() because the call isn't marked complete and isn't
marked as having been released.
Fix this by setting the call state in rxrpc_service_prealloc_one() and then
marking it as being released before calling the cleanup function.
In the Linux kernel, the following vulnerability has been resolved:
net: phy: Don't register LEDs for genphy
If a PHY has no driver, the genphy driver is probed/removed directly in
phy_attach/detach. If the PHY's ofnode has an "leds" subnode, then the
LEDs will be (un)registered when probing/removing the genphy driver.
This could occur if the leds are for a non-generic driver that isn't
loaded for whatever reason. Synchronously removing the PHY device in
phy_detach leads to the following deadlock:
rtnl_lock()
ndo_close()
...
phy_detach()
phy_remove()
phy_leds_unregister()
led_classdev_unregister()
led_trigger_set()
netdev_trigger_deactivate()
unregister_netdevice_notifier()
rtnl_lock()
There is a corresponding deadlock on the open/register side of things
(and that one is reported by lockdep), but it requires a race while this
one is deterministic.
Generic PHYs do not support LEDs anyway, so don't bother registering
them.
In the Linux kernel, the following vulnerability has been resolved:
ice: add NULL check in eswitch lag check
The function ice_lag_is_switchdev_running() is being called from outside of
the LAG event handler code. This results in the lag->upper_netdev being
NULL sometimes. To avoid a NULL-pointer dereference, there needs to be a
check before it is dereferenced.
In the Linux kernel, the following vulnerability has been resolved:
iio: common: st_sensors: Fix use of uninitialize device structs
Throughout the various probe functions &indio_dev->dev is used before it
is initialized. This caused a kernel panic in st_sensors_power_enable()
when the call to devm_regulator_bulk_get_enable() fails and then calls
dev_err_probe() with the uninitialized device.
This seems to only cause a panic with dev_err_probe(), dev_err(),
dev_warn() and dev_info() don't seem to cause a panic, but are fixed
as well.
The issue is reported and traced here: [1]