In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix UAF in smb2_reconnect_server()
The UAF bug is due to smb2_reconnect_server() accessing a session that
is already being teared down by another thread that is executing
__cifs_put_smb_ses(). This can happen when (a) the client has
connection to the server but no session or (b) another thread ends up
setting @ses->ses_status again to something different than
SES_EXITING.
To fix this, we need to make sure to unconditionally set
@ses->ses_status to SES_EXITING and prevent any other threads from
setting a new status while we're still tearing it down.
The following can be reproduced by adding some delay to right after
the ipc is freed in __cifs_put_smb_ses() - which will give
smb2_reconnect_server() worker a chance to run and then accessing
@ses->ipc:
kinit ...
mount.cifs //srv/share /mnt/1 -o sec=krb5,nohandlecache,echo_interval=10
[disconnect srv]
ls /mnt/1 &>/dev/null
sleep 30
kdestroy
[reconnect srv]
sleep 10
umount /mnt/1
...
CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed
CIFS: VFS: \\srv Send error in SessSetup = -126
CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed
CIFS: VFS: \\srv Send error in SessSetup = -126
general protection fault, probably for non-canonical address
0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP NOPTI
CPU: 3 PID: 50 Comm: kworker/3:1 Not tainted 6.9.0-rc2 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39
04/01/2014
Workqueue: cifsiod smb2_reconnect_server [cifs]
RIP: 0010:__list_del_entry_valid_or_report+0x33/0xf0
Code: 4f 08 48 85 d2 74 42 48 85 c9 74 59 48 b8 00 01 00 00 00 00 ad
de 48 39 c2 74 61 48 b8 22 01 00 00 00 00 74 69 <48> 8b 01 48 39 f8 75
7b 48 8b 72 08 48 39 c6 0f 85 88 00 00 00 b8
RSP: 0018:ffffc900001bfd70 EFLAGS: 00010a83
RAX: dead000000000122 RBX: ffff88810da53838 RCX: 6b6b6b6b6b6b6b6b
RDX: 6b6b6b6b6b6b6b6b RSI: ffffffffc02f6878 RDI: ffff88810da53800
RBP: ffff88810da53800 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: ffff88810c064000
R13: 0000000000000001 R14: ffff88810c064000 R15: ffff8881039cc000
FS: 0000000000000000(0000) GS:ffff888157c00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe3728b1000 CR3: 000000010caa4000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
? die_addr+0x36/0x90
? exc_general_protection+0x1c1/0x3f0
? asm_exc_general_protection+0x26/0x30
? __list_del_entry_valid_or_report+0x33/0xf0
__cifs_put_smb_ses+0x1ae/0x500 [cifs]
smb2_reconnect_server+0x4ed/0x710 [cifs]
process_one_work+0x205/0x6b0
worker_thread+0x191/0x360
? __pfx_worker_thread+0x10/0x10
kthread+0xe2/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x34/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in cifs_signal_cifsd_for_reconnect()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF.
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in smb2_is_network_name_deleted()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF.
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in is_valid_oplock_break()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF.
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in smb2_is_valid_lease_break()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF.
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Use device rbtree in iopf reporting path
The existing I/O page fault handler currently locates the PCI device by
calling pci_get_domain_bus_and_slot(). This function searches the list
of all PCI devices until the desired device is found. To improve lookup
efficiency, replace it with device_rbtree_find() to search the device
within the probed device rbtree.
The I/O page fault is initiated by the device, which does not have any
synchronization mechanism with the software to ensure that the device
stays in the probed device tree. Theoretically, a device could be released
by the IOMMU subsystem after device_rbtree_find() and before
iopf_get_dev_fault_param(), which would cause a use-after-free problem.
Add a mutex to synchronize the I/O page fault reporting path and the IOMMU
release device path. This lock doesn't introduce any performance overhead,
as the conflict between I/O page fault reporting and device releasing is
very rare.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix information leak in btrfs_ioctl_logical_to_ino()
Syzbot reported the following information leak for in
btrfs_ioctl_logical_to_ino():
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_user+0xbc/0x110 lib/usercopy.c:40
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
_copy_to_user+0xbc/0x110 lib/usercopy.c:40
copy_to_user include/linux/uaccess.h:191 [inline]
btrfs_ioctl_logical_to_ino+0x440/0x750 fs/btrfs/ioctl.c:3499
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
__kmalloc_large_node+0x231/0x370 mm/slub.c:3921
__do_kmalloc_node mm/slub.c:3954 [inline]
__kmalloc_node+0xb07/0x1060 mm/slub.c:3973
kmalloc_node include/linux/slab.h:648 [inline]
kvmalloc_node+0xc0/0x2d0 mm/util.c:634
kvmalloc include/linux/slab.h:766 [inline]
init_data_container+0x49/0x1e0 fs/btrfs/backref.c:2779
btrfs_ioctl_logical_to_ino+0x17c/0x750 fs/btrfs/ioctl.c:3480
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Bytes 40-65535 of 65536 are uninitialized
Memory access of size 65536 starts at ffff888045a40000
This happens, because we're copying a 'struct btrfs_data_container' back
to user-space. This btrfs_data_container is allocated in
'init_data_container()' via kvmalloc(), which does not zero-fill the
memory.
Fix this by using kvzalloc() which zeroes out the memory on allocation.
In the Linux kernel, the following vulnerability has been resolved:
net: atlantic: eliminate double free in error handling logic
Driver has a logic leak in ring data allocation/free,
where aq_ring_free could be called multiple times on same ring,
if system is under stress and got memory allocation error.
Ring pointer was used as an indicator of failure, but this is
not correct since only ring data is allocated/deallocated.
Ring itself is an array member.
Changing ring allocation functions to return error code directly.
This simplifies error handling and eliminates aq_ring_free
on higher layer.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock with fiemap and extent locking
While working on the patchset to remove extent locking I got a lockdep
splat with fiemap and pagefaulting with my new extent lock replacement
lock.
This deadlock exists with our normal code, we just don't have lockdep
annotations with the extent locking so we've never noticed it.
Since we're copying the fiemap extent to user space on every iteration
we have the chance of pagefaulting. Because we hold the extent lock for
the entire range we could mkwrite into a range in the file that we have
mmap'ed. This would deadlock with the following stack trace
[<0>] lock_extent+0x28d/0x2f0
[<0>] btrfs_page_mkwrite+0x273/0x8a0
[<0>] do_page_mkwrite+0x50/0xb0
[<0>] do_fault+0xc1/0x7b0
[<0>] __handle_mm_fault+0x2fa/0x460
[<0>] handle_mm_fault+0xa4/0x330
[<0>] do_user_addr_fault+0x1f4/0x800
[<0>] exc_page_fault+0x7c/0x1e0
[<0>] asm_exc_page_fault+0x26/0x30
[<0>] rep_movs_alternative+0x33/0x70
[<0>] _copy_to_user+0x49/0x70
[<0>] fiemap_fill_next_extent+0xc8/0x120
[<0>] emit_fiemap_extent+0x4d/0xa0
[<0>] extent_fiemap+0x7f8/0xad0
[<0>] btrfs_fiemap+0x49/0x80
[<0>] __x64_sys_ioctl+0x3e1/0xb50
[<0>] do_syscall_64+0x94/0x1a0
[<0>] entry_SYSCALL_64_after_hwframe+0x6e/0x76
I wrote an fstest to reproduce this deadlock without my replacement lock
and verified that the deadlock exists with our existing locking.
To fix this simply don't take the extent lock for the entire duration of
the fiemap. This is safe in general because we keep track of where we
are when we're searching the tree, so if an ordered extent updates in
the middle of our fiemap call we'll still emit the correct extents
because we know what offset we were on before.
The only place we maintain the lock is searching delalloc. Since the
delalloc stuff can change during writeback we want to lock the extent
range so we have a consistent view of delalloc at the time we're
checking to see if we need to set the delalloc flag.
With this patch applied we no longer deadlock with my testcase.
Linux Kernel Bluetooth CMTP Module Double Free Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of Linux Kernel. An attacker must first obtain the ability to execute high-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the CMTP module. The issue results from the lack of validating the existence of an object prior to performing further free operations on the object. An attacker can leverage this vulnerability to escalate privileges and execute code in the context of the kernel. Was ZDI-CAN-11977.