In the Linux kernel, the following vulnerability has been resolved:
net: xdp: Disallow attaching device-bound programs in generic mode
Device-bound programs are used to support RX metadata kfuncs. These
kfuncs are driver-specific and rely on the driver context to read the
metadata. This means they can't work in generic XDP mode. However, there
is no check to disallow such programs from being attached in generic
mode, in which case the metadata kfuncs will be called in an invalid
context, leading to crashes.
Fix this by adding a check to disallow attaching device-bound programs
in generic mode.
In the Linux kernel, the following vulnerability has been resolved:
driver core: class: Fix wild pointer dereferences in API class_dev_iter_next()
There are a potential wild pointer dereferences issue regarding APIs
class_dev_iter_(init|next|exit)(), as explained by below typical usage:
// All members of @iter are wild pointers.
struct class_dev_iter iter;
// class_dev_iter_init(@iter, @class, ...) checks parameter @class for
// potential class_to_subsys() error, and it returns void type and does
// not initialize its output parameter @iter, so caller can not detect
// the error and continues to invoke class_dev_iter_next(@iter) even if
// @iter still contains wild pointers.
class_dev_iter_init(&iter, ...);
// Dereference these wild pointers in @iter here once suffer the error.
while (dev = class_dev_iter_next(&iter)) { ... };
// Also dereference these wild pointers here.
class_dev_iter_exit(&iter);
Actually, all callers of these APIs have such usage pattern in kernel tree.
Fix by:
- Initialize output parameter @iter by memset() in class_dev_iter_init()
and give callers prompt by pr_crit() for the error.
- Check if @iter is valid in class_dev_iter_next().
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: protect access to buffers with no active references
nilfs_lookup_dirty_data_buffers(), which iterates through the buffers
attached to dirty data folios/pages, accesses the attached buffers without
locking the folios/pages.
For data cache, nilfs_clear_folio_dirty() may be called asynchronously
when the file system degenerates to read only, so
nilfs_lookup_dirty_data_buffers() still has the potential to cause use
after free issues when buffers lose the protection of their dirty state
midway due to this asynchronous clearing and are unintentionally freed by
try_to_free_buffers().
Eliminate this race issue by adjusting the lock section in this function.
In the Linux kernel, the following vulnerability has been resolved:
ptp: Ensure info->enable callback is always set
The ioctl and sysfs handlers unconditionally call the ->enable callback.
Not all drivers implement that callback, leading to NULL dereferences.
Example of affected drivers: ptp_s390.c, ptp_vclock.c and ptp_mock.c.
Instead use a dummy callback if no better was specified by the driver.
In the Linux kernel, the following vulnerability has been resolved:
memory: tegra20-emc: fix an OF node reference bug in tegra_emc_find_node_by_ram_code()
As of_find_node_by_name() release the reference of the argument device
node, tegra_emc_find_node_by_ram_code() releases some device nodes while
still in use, resulting in possible UAFs. According to the bindings and
the in-tree DTS files, the "emc-tables" node is always device's child
node with the property "nvidia,use-ram-code", and the "lpddr2" node is a
child of the "emc-tables" node. Thus utilize the
for_each_child_of_node() macro and of_get_child_by_name() instead of
of_find_node_by_name() to simplify the code.
This bug was found by an experimental verification tool that I am
developing.
[krzysztof: applied v1, adjust the commit msg to incorporate v2 parts]
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: am65-cpsw: fix freeing IRQ in am65_cpsw_nuss_remove_tx_chns()
When getting the IRQ we use k3_udma_glue_tx_get_irq() which returns
negative error value on error. So not NULL check is not sufficient
to deteremine if IRQ is valid. Check that IRQ is greater then zero
to ensure it is valid.
There is no issue at probe time but at runtime user can invoke
.set_channels which results in the following call chain.
am65_cpsw_set_channels()
am65_cpsw_nuss_update_tx_rx_chns()
am65_cpsw_nuss_remove_tx_chns()
am65_cpsw_nuss_init_tx_chns()
At this point if am65_cpsw_nuss_init_tx_chns() fails due to
k3_udma_glue_tx_get_irq() then tx_chn->irq will be set to a
negative value.
Then, at subsequent .set_channels with higher channel count we
will attempt to free an invalid IRQ in am65_cpsw_nuss_remove_tx_chns()
leading to a kernel warning.
The issue is present in the original commit that introduced this driver,
although there, am65_cpsw_nuss_update_tx_rx_chns() existed as
am65_cpsw_nuss_update_tx_chns().
In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix oops when unload drivers paralleling
When unload hclge driver, it tries to disable sriov first for each
ae_dev node from hnae3_ae_dev_list. If user unloads hns3 driver at
the time, because it removes all the ae_dev nodes, and it may cause
oops.
But we can't simply use hnae3_common_lock for this. Because in the
process flow of pci_disable_sriov(), it will trigger the remove flow
of VF, which will also take hnae3_common_lock.
To fixes it, introduce a new mutex to protect the unload process.
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Fix warnings during S3 suspend
The enable_gpe_wakeup() function calls acpi_enable_all_wakeup_gpes(),
and the later one may call the preempt_schedule_common() function,
resulting in a thread switch and causing the CPU to be in an interrupt
enabled state after the enable_gpe_wakeup() function returns, leading
to the warnings as follow.
[ C0] WARNING: ... at kernel/time/timekeeping.c:845 ktime_get+0xbc/0xc8
[ C0] ...
[ C0] Call Trace:
[ C0] [<90000000002243b4>] show_stack+0x64/0x188
[ C0] [<900000000164673c>] dump_stack_lvl+0x60/0x88
[ C0] [<90000000002687e4>] __warn+0x8c/0x148
[ C0] [<90000000015e9978>] report_bug+0x1c0/0x2b0
[ C0] [<90000000016478e4>] do_bp+0x204/0x3b8
[ C0] [<90000000025b1924>] exception_handlers+0x1924/0x10000
[ C0] [<9000000000343bbc>] ktime_get+0xbc/0xc8
[ C0] [<9000000000354c08>] tick_sched_timer+0x30/0xb0
[ C0] [<90000000003408e0>] __hrtimer_run_queues+0x160/0x378
[ C0] [<9000000000341f14>] hrtimer_interrupt+0x144/0x388
[ C0] [<9000000000228348>] constant_timer_interrupt+0x38/0x48
[ C0] [<90000000002feba4>] __handle_irq_event_percpu+0x64/0x1e8
[ C0] [<90000000002fed48>] handle_irq_event_percpu+0x20/0x80
[ C0] [<9000000000306b9c>] handle_percpu_irq+0x5c/0x98
[ C0] [<90000000002fd4a0>] generic_handle_domain_irq+0x30/0x48
[ C0] [<9000000000d0c7b0>] handle_cpu_irq+0x70/0xa8
[ C0] [<9000000001646b30>] handle_loongarch_irq+0x30/0x48
[ C0] [<9000000001646bc8>] do_vint+0x80/0xe0
[ C0] [<90000000002aea1c>] finish_task_switch.isra.0+0x8c/0x2a8
[ C0] [<900000000164e34c>] __schedule+0x314/0xa48
[ C0] [<900000000164ead8>] schedule+0x58/0xf0
[ C0] [<9000000000294a2c>] worker_thread+0x224/0x498
[ C0] [<900000000029d2f0>] kthread+0xf8/0x108
[ C0] [<9000000000221f28>] ret_from_kernel_thread+0xc/0xa4
[ C0]
[ C0] ---[ end trace 0000000000000000 ]---
The root cause is acpi_enable_all_wakeup_gpes() uses a mutex to protect
acpi_hw_enable_all_wakeup_gpes(), and acpi_ut_acquire_mutex() may cause
a thread switch. Since there is no longer concurrent execution during
loongarch_acpi_suspend(), we can call acpi_hw_enable_all_wakeup_gpes()
directly in enable_gpe_wakeup().
The solution is similar to commit 22db06337f590d01 ("ACPI: sleep: Avoid
breaking S3 wakeup due to might_sleep()").