In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix potential NULL pointer dereference in atomctrl_get_smc_sclk_range_table
The function atomctrl_get_smc_sclk_range_table() does not check the return
value of smu_atom_get_data_table(). If smu_atom_get_data_table() fails to
retrieve SMU_Info table, it returns NULL which is later dereferenced.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In practice this should never happen as this code only gets called
on polaris chips and the vbios data table will always be present on
those chips.
In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix handling of received connection abort
Fix the handling of a connection abort that we've received. Though the
abort is at the connection level, it needs propagating to the calls on that
connection. Whilst the propagation bit is performed, the calls aren't then
woken up to go and process their termination, and as no further input is
forthcoming, they just hang.
Also add some tracing for the logging of connection aborts.
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_tcm: Don't free command immediately
Don't prematurely free the command. Wait for the status completion of
the sense status. It can be freed then. Otherwise we will double-free
the command.
In the Linux kernel, the following vulnerability has been resolved:
remoteproc: core: Fix ida_free call while not allocated
In the rproc_alloc() function, on error, put_device(&rproc->dev) is
called, leading to the call of the rproc_type_release() function.
An error can occurs before ida_alloc is called.
In such case in rproc_type_release(), the condition (rproc->index >= 0) is
true as rproc->index has been initialized to 0.
ida_free() is called reporting a warning:
[ 4.181906] WARNING: CPU: 1 PID: 24 at lib/idr.c:525 ida_free+0x100/0x164
[ 4.186378] stm32-display-dsi 5a000000.dsi: Fixed dependency cycle(s) with /soc/dsi@5a000000/panel@0
[ 4.188854] ida_free called for id=0 which is not allocated.
[ 4.198256] mipi-dsi 5a000000.dsi.0: Fixed dependency cycle(s) with /soc/dsi@5a000000
[ 4.203556] Modules linked in: panel_orisetech_otm8009a dw_mipi_dsi_stm(+) gpu_sched dw_mipi_dsi stm32_rproc stm32_crc32 stm32_ipcc(+) optee(+)
[ 4.224307] CPU: 1 UID: 0 PID: 24 Comm: kworker/u10:0 Not tainted 6.12.0 #442
[ 4.231481] Hardware name: STM32 (Device Tree Support)
[ 4.236627] Workqueue: events_unbound deferred_probe_work_func
[ 4.242504] Call trace:
[ 4.242522] unwind_backtrace from show_stack+0x10/0x14
[ 4.250218] show_stack from dump_stack_lvl+0x50/0x64
[ 4.255274] dump_stack_lvl from __warn+0x80/0x12c
[ 4.260134] __warn from warn_slowpath_fmt+0x114/0x188
[ 4.265199] warn_slowpath_fmt from ida_free+0x100/0x164
[ 4.270565] ida_free from rproc_type_release+0x38/0x60
[ 4.275832] rproc_type_release from device_release+0x30/0xa0
[ 4.281601] device_release from kobject_put+0xc4/0x294
[ 4.286762] kobject_put from rproc_alloc.part.0+0x208/0x28c
[ 4.292430] rproc_alloc.part.0 from devm_rproc_alloc+0x80/0xc4
[ 4.298393] devm_rproc_alloc from stm32_rproc_probe+0xd0/0x844 [stm32_rproc]
[ 4.305575] stm32_rproc_probe [stm32_rproc] from platform_probe+0x5c/0xbc
Calling ida_alloc earlier in rproc_alloc ensures that the rproc->index is
properly set.
In the Linux kernel, the following vulnerability has been resolved:
hrtimers: Force migrate away hrtimers queued after CPUHP_AP_HRTIMERS_DYING
hrtimers are migrated away from the dying CPU to any online target at
the CPUHP_AP_HRTIMERS_DYING stage in order not to delay bandwidth timers
handling tasks involved in the CPU hotplug forward progress.
However wakeups can still be performed by the outgoing CPU after
CPUHP_AP_HRTIMERS_DYING. Those can result again in bandwidth timers being
armed. Depending on several considerations (crystal ball power management
based election, earliest timer already enqueued, timer migration enabled or
not), the target may eventually be the current CPU even if offline. If that
happens, the timer is eventually ignored.
The most notable example is RCU which had to deal with each and every of
those wake-ups by deferring them to an online CPU, along with related
workarounds:
_ e787644caf76 (rcu: Defer RCU kthreads wakeup when CPU is dying)
_ 9139f93209d1 (rcu/nocb: Fix RT throttling hrtimer armed from offline CPU)
_ f7345ccc62a4 (rcu/nocb: Fix rcuog wake-up from offline softirq)
The problem isn't confined to RCU though as the stop machine kthread
(which runs CPUHP_AP_HRTIMERS_DYING) reports its completion at the end
of its work through cpu_stop_signal_done() and performs a wake up that
eventually arms the deadline server timer:
WARNING: CPU: 94 PID: 588 at kernel/time/hrtimer.c:1086 hrtimer_start_range_ns+0x289/0x2d0
CPU: 94 UID: 0 PID: 588 Comm: migration/94 Not tainted
Stopper: multi_cpu_stop+0x0/0x120 <- stop_machine_cpuslocked+0x66/0xc0
RIP: 0010:hrtimer_start_range_ns+0x289/0x2d0
Call Trace:
<TASK>
start_dl_timer
enqueue_dl_entity
dl_server_start
enqueue_task_fair
enqueue_task
ttwu_do_activate
try_to_wake_up
complete
cpu_stopper_thread
Instead of providing yet another bandaid to work around the situation, fix
it in the hrtimers infrastructure instead: always migrate away a timer to
an online target whenever it is enqueued from an offline CPU.
This will also allow to revert all the above RCU disgraceful hacks.
In the Linux kernel, the following vulnerability has been resolved:
tty: xilinx_uartps: split sysrq handling
lockdep detects the following circular locking dependency:
CPU 0 CPU 1
========================== ============================
cdns_uart_isr() printk()
uart_port_lock(port) console_lock()
cdns_uart_console_write()
if (!port->sysrq)
uart_port_lock(port)
uart_handle_break()
port->sysrq = ...
uart_handle_sysrq_char()
printk()
console_lock()
The fixed commit attempts to avoid this situation by only taking the
port lock in cdns_uart_console_write if port->sysrq unset. However, if
(as shown above) cdns_uart_console_write runs before port->sysrq is set,
then it will try to take the port lock anyway. This may result in a
deadlock.
Fix this by splitting sysrq handling into two parts. We use the prepare
helper under the port lock and defer handling until we release the lock.
In the Linux kernel, the following vulnerability has been resolved:
fbdev: omap: use threaded IRQ for LCD DMA
When using touchscreen and framebuffer, Nokia 770 crashes easily with:
BUG: scheduling while atomic: irq/144-ads7846/82/0x00010000
Modules linked in: usb_f_ecm g_ether usb_f_rndis u_ether libcomposite configfs omap_udc ohci_omap ohci_hcd
CPU: 0 UID: 0 PID: 82 Comm: irq/144-ads7846 Not tainted 6.12.7-770 #2
Hardware name: Nokia 770
Call trace:
unwind_backtrace from show_stack+0x10/0x14
show_stack from dump_stack_lvl+0x54/0x5c
dump_stack_lvl from __schedule_bug+0x50/0x70
__schedule_bug from __schedule+0x4d4/0x5bc
__schedule from schedule+0x34/0xa0
schedule from schedule_preempt_disabled+0xc/0x10
schedule_preempt_disabled from __mutex_lock.constprop.0+0x218/0x3b4
__mutex_lock.constprop.0 from clk_prepare_lock+0x38/0xe4
clk_prepare_lock from clk_set_rate+0x18/0x154
clk_set_rate from sossi_read_data+0x4c/0x168
sossi_read_data from hwa742_read_reg+0x5c/0x8c
hwa742_read_reg from send_frame_handler+0xfc/0x300
send_frame_handler from process_pending_requests+0x74/0xd0
process_pending_requests from lcd_dma_irq_handler+0x50/0x74
lcd_dma_irq_handler from __handle_irq_event_percpu+0x44/0x130
__handle_irq_event_percpu from handle_irq_event+0x28/0x68
handle_irq_event from handle_level_irq+0x9c/0x170
handle_level_irq from generic_handle_domain_irq+0x2c/0x3c
generic_handle_domain_irq from omap1_handle_irq+0x40/0x8c
omap1_handle_irq from generic_handle_arch_irq+0x28/0x3c
generic_handle_arch_irq from call_with_stack+0x1c/0x24
call_with_stack from __irq_svc+0x94/0xa8
Exception stack(0xc5255da0 to 0xc5255de8)
5da0: 00000001 c22fc620 00000000 00000000 c08384a8 c106fc00 00000000 c240c248
5dc0: c113a600 c3f6ec30 00000001 00000000 c22fc620 c5255df0 c22fc620 c0279a94
5de0: 60000013 ffffffff
__irq_svc from clk_prepare_lock+0x4c/0xe4
clk_prepare_lock from clk_get_rate+0x10/0x74
clk_get_rate from uwire_setup_transfer+0x40/0x180
uwire_setup_transfer from spi_bitbang_transfer_one+0x2c/0x9c
spi_bitbang_transfer_one from spi_transfer_one_message+0x2d0/0x664
spi_transfer_one_message from __spi_pump_transfer_message+0x29c/0x498
__spi_pump_transfer_message from __spi_sync+0x1f8/0x2e8
__spi_sync from spi_sync+0x24/0x40
spi_sync from ads7846_halfd_read_state+0x5c/0x1c0
ads7846_halfd_read_state from ads7846_irq+0x58/0x348
ads7846_irq from irq_thread_fn+0x1c/0x78
irq_thread_fn from irq_thread+0x120/0x228
irq_thread from kthread+0xc8/0xe8
kthread from ret_from_fork+0x14/0x28
As a quick fix, switch to a threaded IRQ which provides a stable system.
In the Linux kernel, the following vulnerability has been resolved:
batman-adv: Drop unmanaged ELP metric worker
The ELP worker needs to calculate new metric values for all neighbors
"reachable" over an interface. Some of the used metric sources require
locks which might need to sleep. This sleep is incompatible with the RCU
list iterator used for the recorded neighbors. The initial approach to work
around of this problem was to queue another work item per neighbor and then
run this in a new context.
Even when this solved the RCU vs might_sleep() conflict, it has a major
problems: Nothing was stopping the work item in case it is not needed
anymore - for example because one of the related interfaces was removed or
the batman-adv module was unloaded - resulting in potential invalid memory
accesses.
Directly canceling the metric worker also has various problems:
* cancel_work_sync for a to-be-deactivated interface is called with
rtnl_lock held. But the code in the ELP metric worker also tries to use
rtnl_lock() - which will never return in this case. This also means that
cancel_work_sync would never return because it is waiting for the worker
to finish.
* iterating over the neighbor list for the to-be-deactivated interface is
currently done using the RCU specific methods. Which means that it is
possible to miss items when iterating over it without the associated
spinlock - a behaviour which is acceptable for a periodic metric check
but not for a cleanup routine (which must "stop" all still running
workers)
The better approch is to get rid of the per interface neighbor metric
worker and handle everything in the interface worker. The original problems
are solved by:
* creating a list of neighbors which require new metric information inside
the RCU protected context, gathering the metric according to the new list
outside the RCU protected context
* only use rcu_trylock inside metric gathering code to avoid a deadlock
when the cancel_delayed_work_sync is called in the interface removal code
(which is called with the rtnl_lock held)
In the Linux kernel, the following vulnerability has been resolved:
PCI: rcar-ep: Fix incorrect variable used when calling devm_request_mem_region()
The rcar_pcie_parse_outbound_ranges() uses the devm_request_mem_region()
macro to request a needed resource. A string variable that lives on the
stack is then used to store a dynamically computed resource name, which
is then passed on as one of the macro arguments. This can lead to
undefined behavior.
Depending on the current contents of the memory, the manifestations of
errors may vary. One possible output may be as follows:
$ cat /proc/iomem
30000000-37ffffff :
38000000-3fffffff :
Sometimes, garbage may appear after the colon.
In very rare cases, if no NULL-terminator is found in memory, the system
might crash because the string iterator will overrun which can lead to
access of unmapped memory above the stack.
Thus, fix this by replacing outbound_name with the name of the previously
requested resource. With the changes applied, the output will be as
follows:
$ cat /proc/iomem
30000000-37ffffff : memory2
38000000-3fffffff : memory3
[kwilczynski: commit log]
In the Linux kernel, the following vulnerability has been resolved:
net: let net.core.dev_weight always be non-zero
The following problem was encountered during stability test:
(NULL net_device): NAPI poll function process_backlog+0x0/0x530 \
returned 1, exceeding its budget of 0.
------------[ cut here ]------------
list_add double add: new=ffff88905f746f48, prev=ffff88905f746f48, \
next=ffff88905f746e40.
WARNING: CPU: 18 PID: 5462 at lib/list_debug.c:35 \
__list_add_valid_or_report+0xf3/0x130
CPU: 18 UID: 0 PID: 5462 Comm: ping Kdump: loaded Not tainted 6.13.0-rc7+
RIP: 0010:__list_add_valid_or_report+0xf3/0x130
Call Trace:
? __warn+0xcd/0x250
? __list_add_valid_or_report+0xf3/0x130
enqueue_to_backlog+0x923/0x1070
netif_rx_internal+0x92/0x2b0
__netif_rx+0x15/0x170
loopback_xmit+0x2ef/0x450
dev_hard_start_xmit+0x103/0x490
__dev_queue_xmit+0xeac/0x1950
ip_finish_output2+0x6cc/0x1620
ip_output+0x161/0x270
ip_push_pending_frames+0x155/0x1a0
raw_sendmsg+0xe13/0x1550
__sys_sendto+0x3bf/0x4e0
__x64_sys_sendto+0xdc/0x1b0
do_syscall_64+0x5b/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The reproduction command is as follows:
sysctl -w net.core.dev_weight=0
ping 127.0.0.1
This is because when the napi's weight is set to 0, process_backlog() may
return 0 and clear the NAPI_STATE_SCHED bit of napi->state, causing this
napi to be re-polled in net_rx_action() until __do_softirq() times out.
Since the NAPI_STATE_SCHED bit has been cleared, napi_schedule_rps() can
be retriggered in enqueue_to_backlog(), causing this issue.
Making the napi's weight always non-zero solves this problem.
Triggering this issue requires system-wide admin (setting is
not namespaced).