In the Linux kernel, the following vulnerability has been resolved:
clk: qcom: gcc-ipq6018: fix terminating of frequency table arrays
The frequency table arrays are supposed to be terminated with an
empty element. Add such entry to the end of the arrays where it
is missing in order to avoid possible out-of-bound access when
the table is traversed by functions like qcom_find_freq() or
qcom_find_freq_floor().
Only compile tested.
In the Linux kernel, the following vulnerability has been resolved:
fat: fix uninitialized field in nostale filehandles
When fat_encode_fh_nostale() encodes file handle without a parent it
stores only first 10 bytes of the file handle. However the length of the
file handle must be a multiple of 4 so the file handle is actually 12
bytes long and the last two bytes remain uninitialized. This is not
great at we potentially leak uninitialized information with the handle
to userspace. Properly initialize the full handle length.
In the Linux kernel, the following vulnerability has been resolved:
nfs: fix UAF in direct writes
In production we have been hitting the following warning consistently
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 17 PID: 1800359 at lib/refcount.c:28 refcount_warn_saturate+0x9c/0xe0
Workqueue: nfsiod nfs_direct_write_schedule_work [nfs]
RIP: 0010:refcount_warn_saturate+0x9c/0xe0
PKRU: 55555554
Call Trace:
<TASK>
? __warn+0x9f/0x130
? refcount_warn_saturate+0x9c/0xe0
? report_bug+0xcc/0x150
? handle_bug+0x3d/0x70
? exc_invalid_op+0x16/0x40
? asm_exc_invalid_op+0x16/0x20
? refcount_warn_saturate+0x9c/0xe0
nfs_direct_write_schedule_work+0x237/0x250 [nfs]
process_one_work+0x12f/0x4a0
worker_thread+0x14e/0x3b0
? ZSTD_getCParams_internal+0x220/0x220
kthread+0xdc/0x120
? __btf_name_valid+0xa0/0xa0
ret_from_fork+0x1f/0x30
This is because we're completing the nfs_direct_request twice in a row.
The source of this is when we have our commit requests to submit, we
process them and send them off, and then in the completion path for the
commit requests we have
if (nfs_commit_end(cinfo.mds))
nfs_direct_write_complete(dreq);
However since we're submitting asynchronous requests we sometimes have
one that completes before we submit the next one, so we end up calling
complete on the nfs_direct_request twice.
The only other place we use nfs_generic_commit_list() is in
__nfs_commit_inode, which wraps this call in a
nfs_commit_begin();
nfs_commit_end();
Which is a common pattern for this style of completion handling, one
that is also repeated in the direct code with get_dreq()/put_dreq()
calls around where we process events as well as in the completion paths.
Fix this by using the same pattern for the commit requests.
Before with my 200 node rocksdb stress running this warning would pop
every 10ish minutes. With my patch the stress test has been running for
several hours without popping.
In the Linux kernel, the following vulnerability has been resolved:
mm: swap: fix race between free_swap_and_cache() and swapoff()
There was previously a theoretical window where swapoff() could run and
teardown a swap_info_struct while a call to free_swap_and_cache() was
running in another thread. This could cause, amongst other bad
possibilities, swap_page_trans_huge_swapped() (called by
free_swap_and_cache()) to access the freed memory for swap_map.
This is a theoretical problem and I haven't been able to provoke it from a
test case. But there has been agreement based on code review that this is
possible (see link below).
Fix it by using get_swap_device()/put_swap_device(), which will stall
swapoff(). There was an extra check in _swap_info_get() to confirm that
the swap entry was not free. This isn't present in get_swap_device()
because it doesn't make sense in general due to the race between getting
the reference and swapoff. So I've added an equivalent check directly in
free_swap_and_cache().
Details of how to provoke one possible issue (thanks to David Hildenbrand
for deriving this):
--8<-----
__swap_entry_free() might be the last user and result in
"count == SWAP_HAS_CACHE".
swapoff->try_to_unuse() will stop as soon as soon as si->inuse_pages==0.
So the question is: could someone reclaim the folio and turn
si->inuse_pages==0, before we completed swap_page_trans_huge_swapped().
Imagine the following: 2 MiB folio in the swapcache. Only 2 subpages are
still references by swap entries.
Process 1 still references subpage 0 via swap entry.
Process 2 still references subpage 1 via swap entry.
Process 1 quits. Calls free_swap_and_cache().
-> count == SWAP_HAS_CACHE
[then, preempted in the hypervisor etc.]
Process 2 quits. Calls free_swap_and_cache().
-> count == SWAP_HAS_CACHE
Process 2 goes ahead, passes swap_page_trans_huge_swapped(), and calls
__try_to_reclaim_swap().
__try_to_reclaim_swap()->folio_free_swap()->delete_from_swap_cache()->
put_swap_folio()->free_swap_slot()->swapcache_free_entries()->
swap_entry_free()->swap_range_free()->
...
WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
What stops swapoff to succeed after process 2 reclaimed the swap cache
but before process1 finished its call to swap_page_trans_huge_swapped()?
--8<-----
In the Linux kernel, the following vulnerability has been resolved:
clk: qcom: mmcc-msm8974: fix terminating of frequency table arrays
The frequency table arrays are supposed to be terminated with an
empty element. Add such entry to the end of the arrays where it
is missing in order to avoid possible out-of-bound access when
the table is traversed by functions like qcom_find_freq() or
qcom_find_freq_floor().
Only compile tested.
In the Linux kernel, the following vulnerability has been resolved:
clk: qcom: mmcc-apq8084: fix terminating of frequency table arrays
The frequency table arrays are supposed to be terminated with an
empty element. Add such entry to the end of the arrays where it
is missing in order to avoid possible out-of-bound access when
the table is traversed by functions like qcom_find_freq() or
qcom_find_freq_floor().
Only compile tested.
In the Linux kernel, the following vulnerability has been resolved:
wireguard: netlink: access device through ctx instead of peer
The previous commit fixed a bug that led to a NULL peer->device being
dereferenced. It's actually easier and faster performance-wise to
instead get the device from ctx->wg. This semantically makes more sense
too, since ctx->wg->peer_allowedips.seq is compared with
ctx->allowedips_seq, basing them both in ctx. This also acts as a
defence in depth provision against freed peers.
In the Linux kernel, the following vulnerability has been resolved:
wireguard: netlink: check for dangling peer via is_dead instead of empty list
If all peers are removed via wg_peer_remove_all(), rather than setting
peer_list to empty, the peer is added to a temporary list with a head on
the stack of wg_peer_remove_all(). If a netlink dump is resumed and the
cursored peer is one that has been removed via wg_peer_remove_all(), it
will iterate from that peer and then attempt to dump freed peers.
Fix this by instead checking peer->is_dead, which was explictly created
for this purpose. Also move up the device_update_lock lockdep assertion,
since reading is_dead relies on that.
It can be reproduced by a small script like:
echo "Setting config..."
ip link add dev wg0 type wireguard
wg setconf wg0 /big-config
(
while true; do
echo "Showing config..."
wg showconf wg0 > /dev/null
done
) &
sleep 4
wg setconf wg0 <(printf "[Peer]\nPublicKey=$(wg genkey)\n")
Resulting in:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x182a/0x1b20
Read of size 8 at addr ffff88811956ec70 by task wg/59
CPU: 2 PID: 59 Comm: wg Not tainted 6.8.0-rc2-debug+ #5
Call Trace:
<TASK>
dump_stack_lvl+0x47/0x70
print_address_description.constprop.0+0x2c/0x380
print_report+0xab/0x250
kasan_report+0xba/0xf0
__lock_acquire+0x182a/0x1b20
lock_acquire+0x191/0x4b0
down_read+0x80/0x440
get_peer+0x140/0xcb0
wg_get_device_dump+0x471/0x1130
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: prevent kernel bug at submit_bh_wbc()
Fix a bug where nilfs_get_block() returns a successful status when
searching and inserting the specified block both fail inconsistently. If
this inconsistent behavior is not due to a previously fixed bug, then an
unexpected race is occurring, so return a temporary error -EAGAIN instead.
This prevents callers such as __block_write_begin_int() from requesting a
read into a buffer that is not mapped, which would cause the BUG_ON check
for the BH_Mapped flag in submit_bh_wbc() to fail.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix failure to detect DAT corruption in btree and direct mappings
Patch series "nilfs2: fix kernel bug at submit_bh_wbc()".
This resolves a kernel BUG reported by syzbot. Since there are two
flaws involved, I've made each one a separate patch.
The first patch alone resolves the syzbot-reported bug, but I think
both fixes should be sent to stable, so I've tagged them as such.
This patch (of 2):
Syzbot has reported a kernel bug in submit_bh_wbc() when writing file data
to a nilfs2 file system whose metadata is corrupted.
There are two flaws involved in this issue.
The first flaw is that when nilfs_get_block() locates a data block using
btree or direct mapping, if the disk address translation routine
nilfs_dat_translate() fails with internal code -ENOENT due to DAT metadata
corruption, it can be passed back to nilfs_get_block(). This causes
nilfs_get_block() to misidentify an existing block as non-existent,
causing both data block lookup and insertion to fail inconsistently.
The second flaw is that nilfs_get_block() returns a successful status in
this inconsistent state. This causes the caller __block_write_begin_int()
or others to request a read even though the buffer is not mapped,
resulting in a BUG_ON check for the BH_Mapped flag in submit_bh_wbc()
failing.
This fixes the first issue by changing the return value to code -EINVAL
when a conversion using DAT fails with code -ENOENT, avoiding the
conflicting condition that leads to the kernel bug described above. Here,
code -EINVAL indicates that metadata corruption was detected during the
block lookup, which will be properly handled as a file system error and
converted to -EIO when passing through the nilfs2 bmap layer.