Vulnerabilities
Vulnerable Software
In the Linux kernel, the following vulnerability has been resolved: xhci: Handle TD clearing for multiple streams case When multiple streams are in use, multiple TDs might be in flight when an endpoint is stopped. We need to issue a Set TR Dequeue Pointer for each, to ensure everything is reset properly and the caches cleared. Change the logic so that any N>1 TDs found active for different streams are deferred until after the first one is processed, calling xhci_invalidate_cancelled_tds() again from xhci_handle_cmd_set_deq() to queue another command until we are done with all of them. Also change the error/"should never happen" paths to ensure we at least clear any affected TDs, even if we can't issue a command to clear the hardware cache, and complain loudly with an xhci_warn() if this ever happens. This problem case dates back to commit e9df17eb1408 ("USB: xhci: Correct assumptions about number of rings per endpoint.") early on in the XHCI driver's life, when stream support was first added. It was then identified but not fixed nor made into a warning in commit 674f8438c121 ("xhci: split handling halted endpoints into two steps"), which added a FIXME comment for the problem case (without materially changing the behavior as far as I can tell, though the new logic made the problem more obvious). Then later, in commit 94f339147fc3 ("xhci: Fix failure to give back some cached cancelled URBs."), it was acknowledged again. [Mathias: commit 94f339147fc3 ("xhci: Fix failure to give back some cached cancelled URBs.") was a targeted regression fix to the previously mentioned patch. Users reported issues with usb stuck after unmounting/disconnecting UAS devices. This rolled back the TD clearing of multiple streams to its original state.] Apparently the commit author was aware of the problem (yet still chose to submit it): It was still mentioned as a FIXME, an xhci_dbg() was added to log the problem condition, and the remaining issue was mentioned in the commit description. The choice of making the log type xhci_dbg() for what is, at this point, a completely unhandled and known broken condition is puzzling and unfortunate, as it guarantees that no actual users would see the log in production, thereby making it nigh undebuggable (indeed, even if you turn on DEBUG, the message doesn't really hint at there being a problem at all). It took me *months* of random xHC crashes to finally find a reliable repro and be able to do a deep dive debug session, which could all have been avoided had this unhandled, broken condition been actually reported with a warning, as it should have been as a bug intentionally left in unfixed (never mind that it shouldn't have been left in at all). > Another fix to solve clearing the caches of all stream rings with > cancelled TDs is needed, but not as urgent. 3 years after that statement and 14 years after the original bug was introduced, I think it's finally time to fix it. And maybe next time let's not leave bugs unfixed (that are actually worse than the original bug), and let's actually get people to review kernel commits please. Fixes xHC crashes and IOMMU faults with UAS devices when handling errors/faults. Easiest repro is to use `hdparm` to mark an early sector (e.g. 1024) on a disk as bad, then `cat /dev/sdX > /dev/null` in a loop. At least in the case of JMicron controllers, the read errors end up having to cancel two TDs (for two queued requests to different streams) and the one that didn't get cleared properly ends up faulting the xHC entirely when it tries to access DMA pages that have since been unmapped, referred to by the stale TDs. This normally happens quickly (after two or three loops). After this fix, I left the `cat` in a loop running overnight and experienced no xHC failures, with all read errors recovered properly. Repro'd and tested on an Apple M1 Mac Mini (dwc3 host). On systems without an IOMMU, this bug would instead silently corrupt freed memory, making this a ---truncated---
CVSS Score
7.8
EPSS Score
0.0
Published
2024-07-12
In the Linux kernel, the following vulnerability has been resolved: drm/exynos/vidi: fix memory leak in .get_modes() The duplicated EDID is never freed. Fix it.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-07-12
In the Linux kernel, the following vulnerability has been resolved: parisc: Try to fix random segmentation faults in package builds PA-RISC systems with PA8800 and PA8900 processors have had problems with random segmentation faults for many years. Systems with earlier processors are much more stable. Systems with PA8800 and PA8900 processors have a large L2 cache which needs per page flushing for decent performance when a large range is flushed. The combined cache in these systems is also more sensitive to non-equivalent aliases than the caches in earlier systems. The majority of random segmentation faults that I have looked at appear to be memory corruption in memory allocated using mmap and malloc. My first attempt at fixing the random faults didn't work. On reviewing the cache code, I realized that there were two issues which the existing code didn't handle correctly. Both relate to cache move-in. Another issue is that the present bit in PTEs is racy. 1) PA-RISC caches have a mind of their own and they can speculatively load data and instructions for a page as long as there is a entry in the TLB for the page which allows move-in. TLBs are local to each CPU. Thus, the TLB entry for a page must be purged before flushing the page. This is particularly important on SMP systems. In some of the flush routines, the flush routine would be called and then the TLB entry would be purged. This was because the flush routine needed the TLB entry to do the flush. 2) My initial approach to trying the fix the random faults was to try and use flush_cache_page_if_present for all flush operations. This actually made things worse and led to a couple of hardware lockups. It finally dawned on me that some lines weren't being flushed because the pte check code was racy. This resulted in random inequivalent mappings to physical pages. The __flush_cache_page tmpalias flush sets up its own TLB entry and it doesn't need the existing TLB entry. As long as we can find the pte pointer for the vm page, we can get the pfn and physical address of the page. We can also purge the TLB entry for the page before doing the flush. Further, __flush_cache_page uses a special TLB entry that inhibits cache move-in. When switching page mappings, we need to ensure that lines are removed from the cache. It is not sufficient to just flush the lines to memory as they may come back. This made it clear that we needed to implement all the required flush operations using tmpalias routines. This includes flushes for user and kernel pages. After modifying the code to use tmpalias flushes, it became clear that the random segmentation faults were not fully resolved. The frequency of faults was worse on systems with a 64 MB L2 (PA8900) and systems with more CPUs (rp4440). The warning that I added to flush_cache_page_if_present to detect pages that couldn't be flushed triggered frequently on some systems. Helge and I looked at the pages that couldn't be flushed and found that the PTE was either cleared or for a swap page. Ignoring pages that were swapped out seemed okay but pages with cleared PTEs seemed problematic. I looked at routines related to pte_clear and noticed ptep_clear_flush. The default implementation just flushes the TLB entry. However, it was obvious that on parisc we need to flush the cache page as well. If we don't flush the cache page, stale lines will be left in the cache and cause random corruption. Once a PTE is cleared, there is no way to find the physical address associated with the PTE and flush the associated page at a later time. I implemented an updated change with a parisc specific version of ptep_clear_flush. It fixed the random data corruption on Helge's rp4440 and rp3440, as well as on my c8000. At this point, I realized that I could restore the code where we only flush in flush_cache_page_if_present if the page has been accessed. However, for this, we also need to flush the cache when the accessed bit is cleared in ---truncated---
CVSS Score
6.3
EPSS Score
0.0
Published
2024-07-12
In the Linux kernel, the following vulnerability has been resolved: jfs: xattr: fix buffer overflow for invalid xattr When an xattr size is not what is expected, it is printed out to the kernel log in hex format as a form of debugging. But when that xattr size is bigger than the expected size, printing it out can cause an access off the end of the buffer. Fix this all up by properly restricting the size of the debug hex dump in the kernel log.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-07-12
In the Linux kernel, the following vulnerability has been resolved: USB: class: cdc-wdm: Fix CPU lockup caused by excessive log messages The syzbot fuzzer found that the interrupt-URB completion callback in the cdc-wdm driver was taking too long, and the driver's immediate resubmission of interrupt URBs with -EPROTO status combined with the dummy-hcd emulation to cause a CPU lockup: cdc_wdm 1-1:1.0: nonzero urb status received: -71 cdc_wdm 1-1:1.0: wdm_int_callback - 0 bytes watchdog: BUG: soft lockup - CPU#0 stuck for 26s! [syz-executor782:6625] CPU#0 Utilization every 4s during lockup: #1: 98% system, 0% softirq, 3% hardirq, 0% idle #2: 98% system, 0% softirq, 3% hardirq, 0% idle #3: 98% system, 0% softirq, 3% hardirq, 0% idle #4: 98% system, 0% softirq, 3% hardirq, 0% idle #5: 98% system, 1% softirq, 3% hardirq, 0% idle Modules linked in: irq event stamp: 73096 hardirqs last enabled at (73095): [<ffff80008037bc00>] console_emit_next_record kernel/printk/printk.c:2935 [inline] hardirqs last enabled at (73095): [<ffff80008037bc00>] console_flush_all+0x650/0xb74 kernel/printk/printk.c:2994 hardirqs last disabled at (73096): [<ffff80008af10b00>] __el1_irq arch/arm64/kernel/entry-common.c:533 [inline] hardirqs last disabled at (73096): [<ffff80008af10b00>] el1_interrupt+0x24/0x68 arch/arm64/kernel/entry-common.c:551 softirqs last enabled at (73048): [<ffff8000801ea530>] softirq_handle_end kernel/softirq.c:400 [inline] softirqs last enabled at (73048): [<ffff8000801ea530>] handle_softirqs+0xa60/0xc34 kernel/softirq.c:582 softirqs last disabled at (73043): [<ffff800080020de8>] __do_softirq+0x14/0x20 kernel/softirq.c:588 CPU: 0 PID: 6625 Comm: syz-executor782 Tainted: G W 6.10.0-rc2-syzkaller-g8867bbd4a056 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024 Testing showed that the problem did not occur if the two error messages -- the first two lines above -- were removed; apparently adding material to the kernel log takes a surprisingly large amount of time. In any case, the best approach for preventing these lockups and to avoid spamming the log with thousands of error messages per second is to ratelimit the two dev_err() calls. Therefore we replace them with dev_err_ratelimited().
CVSS Score
5.5
EPSS Score
0.0
Published
2024-07-12
In the Linux kernel, the following vulnerability has been resolved: ima: Fix use-after-free on a dentry's dname.name ->d_name.name can change on rename and the earlier value can be freed; there are conditions sufficient to stabilize it (->d_lock on dentry, ->d_lock on its parent, ->i_rwsem exclusive on the parent's inode, rename_lock), but none of those are met at any of the sites. Take a stable snapshot of the name instead.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-07-12
In the Linux kernel, the following vulnerability has been resolved: greybus: Fix use-after-free bug in gb_interface_release due to race condition. In gb_interface_create, &intf->mode_switch_completion is bound with gb_interface_mode_switch_work. Then it will be started by gb_interface_request_mode_switch. Here is the relevant code. if (!queue_work(system_long_wq, &intf->mode_switch_work)) { ... } If we call gb_interface_release to make cleanup, there may be an unfinished work. This function will call kfree to free the object "intf". However, if gb_interface_mode_switch_work is scheduled to run after kfree, it may cause use-after-free error as gb_interface_mode_switch_work will use the object "intf". The possible execution flow that may lead to the issue is as follows: CPU0 CPU1 | gb_interface_create | gb_interface_request_mode_switch gb_interface_release | kfree(intf) (free) | | gb_interface_mode_switch_work | mutex_lock(&intf->mutex) (use) Fix it by canceling the work before kfree.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-07-12
In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix use-after-free due to race with dev replace While loading a zone's info during creation of a block group, we can race with a device replace operation and then trigger a use-after-free on the device that was just replaced (source device of the replace operation). This happens because at btrfs_load_zone_info() we extract a device from the chunk map into a local variable and then use the device while not under the protection of the device replace rwsem. So if there's a device replace operation happening when we extract the device and that device is the source of the replace operation, we will trigger a use-after-free if before we finish using the device the replace operation finishes and frees the device. Fix this by enlarging the critical section under the protection of the device replace rwsem so that all uses of the device are done inside the critical section.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-07-12
In the Linux kernel, the following vulnerability has been resolved: xfs: fix log recovery buffer allocation for the legacy h_size fixup Commit a70f9fe52daa ("xfs: detect and handle invalid iclog size set by mkfs") added a fixup for incorrect h_size values used for the initial umount record in old xfsprogs versions. Later commit 0c771b99d6c9 ("xfs: clean up calculation of LR header blocks") cleaned up the log reover buffer calculation, but stoped using the fixed up h_size value to size the log recovery buffer, which can lead to an out of bounds access when the incorrect h_size does not come from the old mkfs tool, but a fuzzer. Fix this by open coding xlog_logrec_hblks and taking the fixed h_size into account for this calculation.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-07-05
In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: ipc4-topology: Fix input format query of process modules without base extension If a process module does not have base config extension then the same format applies to all of it's inputs and the process->base_config_ext is NULL, causing NULL dereference when specifically crafted topology and sequences used.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-07-05


Contact Us

Shodan ® - All rights reserved