In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Atom Integrated System Info v2_2 for DCN35
New request from KMD/VBIOS in order to support new UMA carveout
model. This fixes a null dereference from accessing
Ctx->dc_bios->integrated_info while it was NULL.
DAL parses through the BIOS and extracts the necessary
integrated_info but was missing a case for the new BIOS
version 2.3.
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpm: Check for port partner validity before consuming it
typec_register_partner() does not guarantee partner registration
to always succeed. In the event of failure, port->partner is set
to the error value or NULL. Given that port->partner validity is
not checked, this results in the following crash:
Unable to handle kernel NULL pointer dereference at virtual address xx
pc : run_state_machine+0x1bc8/0x1c08
lr : run_state_machine+0x1b90/0x1c08
..
Call trace:
run_state_machine+0x1bc8/0x1c08
tcpm_state_machine_work+0x94/0xe4
kthread_worker_fn+0x118/0x328
kthread+0x1d0/0x23c
ret_from_fork+0x10/0x20
To prevent the crash, check for port->partner validity before
derefencing it in all the call sites.
In the Linux kernel, the following vulnerability has been resolved:
net: tulip: de4x5: fix the problem that the array 'lp->phy[8]' may be out of bound
In line 5001, if all id in the array 'lp->phy[8]' is not 0, when the
'for' end, the 'k' is 8.
At this time, the array 'lp->phy[8]' may be out of bound.
In the Linux kernel, the following vulnerability has been resolved:
ethernet: hisilicon: hns: hns_dsaf_misc: fix a possible array overflow in hns_dsaf_ge_srst_by_port()
The if statement:
if (port >= DSAF_GE_NUM)
return;
limits the value of port less than DSAF_GE_NUM (i.e., 8).
However, if the value of port is 6 or 7, an array overflow could occur:
port_rst_off = dsaf_dev->mac_cb[port]->port_rst_off;
because the length of dsaf_dev->mac_cb is DSAF_MAX_PORT_NUM (i.e., 6).
To fix this possible array overflow, we first check port and if it is
greater than or equal to DSAF_MAX_PORT_NUM, the function returns.
In the Linux kernel, the following vulnerability has been resolved:
sata_fsl: fix UAF in sata_fsl_port_stop when rmmod sata_fsl
When the `rmmod sata_fsl.ko` command is executed in the PPC64 GNU/Linux,
a bug is reported:
==================================================================
BUG: Unable to handle kernel data access on read at 0x80000800805b502c
Oops: Kernel access of bad area, sig: 11 [#1]
NIP [c0000000000388a4] .ioread32+0x4/0x20
LR [80000000000c6034] .sata_fsl_port_stop+0x44/0xe0 [sata_fsl]
Call Trace:
.free_irq+0x1c/0x4e0 (unreliable)
.ata_host_stop+0x74/0xd0 [libata]
.release_nodes+0x330/0x3f0
.device_release_driver_internal+0x178/0x2c0
.driver_detach+0x64/0xd0
.bus_remove_driver+0x70/0xf0
.driver_unregister+0x38/0x80
.platform_driver_unregister+0x14/0x30
.fsl_sata_driver_exit+0x18/0xa20 [sata_fsl]
.__se_sys_delete_module+0x1ec/0x2d0
.system_call_exception+0xfc/0x1f0
system_call_common+0xf8/0x200
==================================================================
The triggering of the BUG is shown in the following stack:
driver_detach
device_release_driver_internal
__device_release_driver
drv->remove(dev) --> platform_drv_remove/platform_remove
drv->remove(dev) --> sata_fsl_remove
iounmap(host_priv->hcr_base); <---- unmap
kfree(host_priv); <---- free
devres_release_all
release_nodes
dr->node.release(dev, dr->data) --> ata_host_stop
ap->ops->port_stop(ap) --> sata_fsl_port_stop
ioread32(hcr_base + HCONTROL) <---- UAF
host->ops->host_stop(host)
The iounmap(host_priv->hcr_base) and kfree(host_priv) functions should
not be executed in drv->remove. These functions should be executed in
host_stop after port_stop. Therefore, we move these functions to the
new function sata_fsl_host_stop and bind the new function to host_stop.