In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix division by zero in setup_dsc_config
When slice_height is 0, the division by slice_height in the calculation
of the number of slices will cause a division by zero driver crash. This
leaves the kernel in a state that requires a reboot. This patch adds a
check to avoid the division by zero.
The stack trace below is for the 6.8.4 Kernel. I reproduced the issue on
a Z16 Gen 2 Lenovo Thinkpad with a Apple Studio Display monitor
connected via Thunderbolt. The amdgpu driver crashed with this exception
when I rebooted the system with the monitor connected.
kernel: ? die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434 arch/x86/kernel/dumpstack.c:447)
kernel: ? do_trap (arch/x86/kernel/traps.c:113 arch/x86/kernel/traps.c:154)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? do_error_trap (./arch/x86/include/asm/traps.h:58 arch/x86/kernel/traps.c:175)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? exc_divide_error (arch/x86/kernel/traps.c:194 (discriminator 2))
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? asm_exc_divide_error (./arch/x86/include/asm/idtentry.h:548)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: dc_dsc_compute_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1109) amdgpu
After applying this patch, the driver no longer crashes when the monitor
is connected and the system is rebooted. I believe this is the same
issue reported for 3113.
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Move NPIV's transport unregistration to after resource clean up
There are cases after NPIV deletion where the fabric switch still believes
the NPIV is logged into the fabric. This occurs when a vport is
unregistered before the Remove All DA_ID CT and LOGO ELS are sent to the
fabric.
Currently fc_remove_host(), which calls dev_loss_tmo for all D_IDs including
the fabric D_ID, removes the last ndlp reference and frees the ndlp rport
object. This sometimes causes the race condition where the final DA_ID and
LOGO are skipped from being sent to the fabric switch.
Fix by moving the fc_remove_host() and scsi_remove_host() calls after DA_ID
and LOGO are sent.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: guard against invalid STA ID on removal
Guard against invalid station IDs in iwl_mvm_mld_rm_sta_id as that would
result in out-of-bounds array accesses. This prevents issues should the
driver get into a bad state during error handling.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: read txq->read_ptr under lock
If we read txq->read_ptr without lock, we can read the same
value twice, then obtain the lock, and reclaim from there
to two different places, but crucially reclaim the same
entry twice, resulting in the WARN_ONCE() a little later.
Fix that by reading txq->read_ptr under lock.
In the Linux kernel, the following vulnerability has been resolved:
fs/9p: fix uninitialized values during inode evict
If an iget fails due to not being able to retrieve information
from the server then the inode structure is only partially
initialized. When the inode gets evicted, references to
uninitialized structures (like fscache cookies) were being
made.
This patch checks for a bad_inode before doing anything other
than clearing the inode from the cache. Since the inode is
bad, it shouldn't have any state associated with it that needs
to be written back (and there really isn't a way to complete
those anyways).
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up()
lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the
hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the
hbalock to avoid potential deadlock.
In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Don't free ring buffers that couldn't be re-encrypted
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The VMBus ring buffer code could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the struct
vmbus_gpadl for the ring buffers to decide whether to free the memory.
In the Linux kernel, the following vulnerability has been resolved:
uio_hv_generic: Don't free decrypted memory
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The VMBus device UIO driver could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the gpadl
to decide whether to free the memory.
In the Linux kernel, the following vulnerability has been resolved:
hv_netvsc: Don't free decrypted memory
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The netvsc driver could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the gpadl
to decide whether to free the memory.
In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Track decrypted status in vmbus_gpadl
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
In order to make sure callers of vmbus_establish_gpadl() and
vmbus_teardown_gpadl() don't return decrypted/shared pages to
allocators, add a field in struct vmbus_gpadl to keep track of the
decryption status of the buffers. This will allow the callers to
know if they should free or leak the pages.