In the Linux kernel, the following vulnerability has been resolved:
ath10k: skip ath10k_halt during suspend for driver state RESTARTING
Double free crash is observed when FW recovery(caused by wmi
timeout/crash) is followed by immediate suspend event. The FW recovery
is triggered by ath10k_core_restart() which calls driver clean up via
ath10k_halt(). When the suspend event occurs between the FW recovery,
the restart worker thread is put into frozen state until suspend completes.
The suspend event triggers ath10k_stop() which again triggers ath10k_halt()
The double invocation of ath10k_halt() causes ath10k_htt_rx_free() to be
called twice(Note: ath10k_htt_rx_alloc was not called by restart worker
thread because of its frozen state), causing the crash.
To fix this, during the suspend flow, skip call to ath10k_halt() in
ath10k_stop() when the current driver state is ATH10K_STATE_RESTARTING.
Also, for driver state ATH10K_STATE_RESTARTING, call
ath10k_wait_for_suspend() in ath10k_stop(). This is because call to
ath10k_wait_for_suspend() is skipped later in
[ath10k_halt() > ath10k_core_stop()] for the driver state
ATH10K_STATE_RESTARTING.
The frozen restart worker thread will be cancelled during resume when the
device comes out of suspend.
Below is the crash stack for reference:
[ 428.469167] ------------[ cut here ]------------
[ 428.469180] kernel BUG at mm/slub.c:4150!
[ 428.469193] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 428.469219] Workqueue: events_unbound async_run_entry_fn
[ 428.469230] RIP: 0010:kfree+0x319/0x31b
[ 428.469241] RSP: 0018:ffffa1fac015fc30 EFLAGS: 00010246
[ 428.469247] RAX: ffffedb10419d108 RBX: ffff8c05262b0000
[ 428.469252] RDX: ffff8c04a8c07000 RSI: 0000000000000000
[ 428.469256] RBP: ffffa1fac015fc78 R08: 0000000000000000
[ 428.469276] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 428.469285] Call Trace:
[ 428.469295] ? dma_free_attrs+0x5f/0x7d
[ 428.469320] ath10k_core_stop+0x5b/0x6f
[ 428.469336] ath10k_halt+0x126/0x177
[ 428.469352] ath10k_stop+0x41/0x7e
[ 428.469387] drv_stop+0x88/0x10e
[ 428.469410] __ieee80211_suspend+0x297/0x411
[ 428.469441] rdev_suspend+0x6e/0xd0
[ 428.469462] wiphy_suspend+0xb1/0x105
[ 428.469483] ? name_show+0x2d/0x2d
[ 428.469490] dpm_run_callback+0x8c/0x126
[ 428.469511] ? name_show+0x2d/0x2d
[ 428.469517] __device_suspend+0x2e7/0x41b
[ 428.469523] async_suspend+0x1f/0x93
[ 428.469529] async_run_entry_fn+0x3d/0xd1
[ 428.469535] process_one_work+0x1b1/0x329
[ 428.469541] worker_thread+0x213/0x372
[ 428.469547] kthread+0x150/0x15f
[ 428.469552] ? pr_cont_work+0x58/0x58
[ 428.469558] ? kthread_blkcg+0x31/0x31
Tested-on: QCA6174 hw3.2 PCI WLAN.RM.4.4.1-00288-QCARMSWPZ-1
In the Linux kernel, the following vulnerability has been resolved:
usbnet: Run unregister_netdev() before unbind() again
Commit 2c9d6c2b871d ("usbnet: run unbind() before unregister_netdev()")
sought to fix a use-after-free on disconnect of USB Ethernet adapters.
It turns out that a different fix is necessary to address the issue:
https://lore.kernel.org/netdev/18b3541e5372bc9b9fc733d422f4e698c089077c.1650177997.git.lukas@wunner.de/
So the commit was not necessary.
The commit made binding and unbinding of USB Ethernet asymmetrical:
Before, usbnet_probe() first invoked the ->bind() callback and then
register_netdev(). usbnet_disconnect() mirrored that by first invoking
unregister_netdev() and then ->unbind().
Since the commit, the order in usbnet_disconnect() is reversed and no
longer mirrors usbnet_probe().
One consequence is that a PHY disconnected (and stopped) in ->unbind()
is afterwards stopped once more by unregister_netdev() as it closes the
netdev before unregistering. That necessitates a contortion in ->stop()
because the PHY may only be stopped if it hasn't already been
disconnected.
Reverting the commit allows making the call to phy_stop() unconditional
in ->stop().
In the Linux kernel, the following vulnerability has been resolved:
media: rga: fix possible memory leak in rga_probe
rga->m2m_dev needs to be freed when rga_probe fails.
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Inhibit aborts if external loopback plug is inserted
After running a short external loopback test, when the external loopback is
removed and a normal cable inserted that is directly connected to a target
device, the system oops in the llpfc_set_rrq_active() routine.
When the loopback was inserted an FLOGI was transmit. As we're looped back,
we receive the FLOGI request. The FLOGI is ABTS'd as we recognize the same
wppn thus understand it's a loopback. However, as the ABTS sends address
information the port is not set to (fffffe), the ABTS is dropped on the
wire. A short 1 frame loopback test is run and completes before the ABTS
times out. The looback is unplugged and the new cable plugged in, and the
an FLOGI to the new device occurs and completes. Due to a mixup in ref
counting the completion of the new FLOGI releases the fabric ndlp. Then the
original ABTS completes and references the released ndlp generating the
oops.
Correct by no-op'ing the ABTS when in loopback mode (it will be dropped
anyway). Added a flag to track the mode to recognize when it should be
no-op'd.
In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: fix a NULL pointer dereference in nvme_alloc_admin_tags
In nvme_alloc_admin_tags, the admin_q can be set to an error (typically
-ENOMEM) if the blk_mq_init_queue call fails to set up the queue, which
is checked immediately after the call. However, when we return the error
message up the stack, to nvme_reset_work the error takes us to
nvme_remove_dead_ctrl()
nvme_dev_disable()
nvme_suspend_queue(&dev->queues[0]).
Here, we only check that the admin_q is non-NULL, rather than not
an error or NULL, and begin quiescing a queue that never existed, leading
to bad / NULL pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: rt5645: Fix errorenous cleanup order
There is a logic error when removing rt5645 device as the function
rt5645_i2c_remove() first cancel the &rt5645->jack_detect_work and
delete the &rt5645->btn_check_timer latter. However, since the timer
handler rt5645_btn_check_callback() will re-queue the jack_detect_work,
this cleanup order is buggy.
That is, once the del_timer_sync in rt5645_i2c_remove is concurrently
run with the rt5645_btn_check_callback, the canceled jack_detect_work
will be rescheduled again, leading to possible use-after-free.
This patch fix the issue by placing the del_timer_sync function before
the cancel_delayed_work_sync.
In the Linux kernel, the following vulnerability has been resolved:
net: remove two BUG() from skb_checksum_help()
I have a syzbot report that managed to get a crash in skb_checksum_help()
If syzbot can trigger these BUG(), it makes sense to replace
them with more friendly WARN_ON_ONCE() since skb_checksum_help()
can instead return an error code.
Note that syzbot will still crash there, until real bug is fixed.
In the Linux kernel, the following vulnerability has been resolved:
media: pvrusb2: fix array-index-out-of-bounds in pvr2_i2c_core_init
Syzbot reported that -1 is used as array index. The problem was in
missing validation check.
hdw->unit_number is initialized with -1 and then if init table walk fails
this value remains unchanged. Since code blindly uses this member for
array indexing adding sanity check is the easiest fix for that.
hdw->workpoll initialization moved upper to prevent warning in
__flush_work.
In the Linux kernel, the following vulnerability has been resolved:
regulator: pfuze100: Fix refcount leak in pfuze_parse_regulators_dt
of_node_get() returns a node with refcount incremented.
Calling of_node_put() to drop the reference when not needed anymore.