In the Linux kernel, the following vulnerability has been resolved:
loop: implement ->free_disk
Ensure that the lo_device which is stored in the gendisk private
data is valid until the gendisk is freed. Currently the loop driver
uses a lot of effort to make sure a device is not freed when it is
still in use, but to to fix a potential deadlock this will be relaxed
a bit soon.
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Protect memory leak for NPIV ports sending PLOGI_RJT
There is a potential memory leak in lpfc_ignore_els_cmpl() and
lpfc_els_rsp_reject() that was allocated from NPIV PLOGI_RJT
(lpfc_rcv_plogi()'s login_mbox).
Check if cmdiocb->context_un.mbox was allocated in lpfc_ignore_els_cmpl(),
and then free it back to phba->mbox_mem_pool along with mbox->ctx_buf for
service parameters.
For lpfc_els_rsp_reject() failure, free both the ctx_buf for service
parameters and the login_mbox.
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix null pointer dereference after failing to issue FLOGI and PLOGI
If lpfc_issue_els_flogi() fails and returns non-zero status, the node
reference count is decremented to trigger the release of the nodelist
structure. However, if there is a prior registration or dev-loss-evt work
pending, the node may be released prematurely. When dev-loss-evt
completes, the released node is referenced causing a use-after-free null
pointer dereference.
Similarly, when processing non-zero ELS PLOGI completion status in
lpfc_cmpl_els_plogi(), the ndlp flags are checked for a transport
registration before triggering node removal. If dev-loss-evt work is
pending, the node may be released prematurely and a subsequent call to
lpfc_dev_loss_tmo_handler() results in a use after free ndlp dereference.
Add test for pending dev-loss before decrementing the node reference count
for FLOGI, PLOGI, PRLI, and ADISC handling.
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix SCSI I/O completion and abort handler deadlock
During stress I/O tests with 500+ vports, hard LOCKUP call traces are
observed.
CPU A:
native_queued_spin_lock_slowpath+0x192
_raw_spin_lock_irqsave+0x32
lpfc_handle_fcp_err+0x4c6
lpfc_fcp_io_cmd_wqe_cmpl+0x964
lpfc_sli4_fp_handle_cqe+0x266
__lpfc_sli4_process_cq+0x105
__lpfc_sli4_hba_process_cq+0x3c
lpfc_cq_poll_hdler+0x16
irq_poll_softirq+0x76
__softirqentry_text_start+0xe4
irq_exit+0xf7
do_IRQ+0x7f
CPU B:
native_queued_spin_lock_slowpath+0x5b
_raw_spin_lock+0x1c
lpfc_abort_handler+0x13e
scmd_eh_abort_handler+0x85
process_one_work+0x1a7
worker_thread+0x30
kthread+0x112
ret_from_fork+0x1f
Diagram of lockup:
CPUA CPUB
---- ----
lpfc_cmd->buf_lock
phba->hbalock
lpfc_cmd->buf_lock
phba->hbalock
Fix by reordering the taking of the lpfc_cmd->buf_lock and phba->hbalock in
lpfc_abort_handler routine so that it tries to take the lpfc_cmd->buf_lock
first before phba->hbalock.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: jack: Access input_dev under mutex
It is possible when using ASoC that input_dev is unregistered while
calling snd_jack_report, which causes NULL pointer dereference.
In order to prevent this serialize access to input_dev using mutex lock.
In the Linux kernel, the following vulnerability has been resolved:
media: pci: cx23885: Fix the error handling in cx23885_initdev()
When the driver fails to call the dma_set_mask(), the driver will get
the following splat:
[ 55.853884] BUG: KASAN: use-after-free in __process_removed_driver+0x3c/0x240
[ 55.854486] Read of size 8 at addr ffff88810de60408 by task modprobe/590
[ 55.856822] Call Trace:
[ 55.860327] __process_removed_driver+0x3c/0x240
[ 55.861347] bus_for_each_dev+0x102/0x160
[ 55.861681] i2c_del_driver+0x2f/0x50
This is because the driver has initialized the i2c related resources
in cx23885_dev_setup() but not released them in error handling, fix this
bug by modifying the error path that jumps after failing to call the
dma_set_mask().
In the Linux kernel, the following vulnerability has been resolved:
media: venus: hfi: avoid null dereference in deinit
If venus_probe fails at pm_runtime_put_sync the error handling first
calls hfi_destroy and afterwards hfi_core_deinit. As hfi_destroy sets
core->ops to NULL, hfi_core_deinit cannot call the core_deinit function
anymore.
Avoid this null pointer derefence by skipping the call when necessary.