Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.14.100  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: i40e: fix IRQ freeing in i40e_vsi_request_irq_msix error path If request_irq() in i40e_vsi_request_irq_msix() fails in an iteration later than the first, the error path wants to free the IRQs requested so far. However, it uses the wrong dev_id argument for free_irq(), so it does not free the IRQs correctly and instead triggers the warning: Trying to free already-free IRQ 173 WARNING: CPU: 25 PID: 1091 at kernel/irq/manage.c:1829 __free_irq+0x192/0x2c0 Modules linked in: i40e(+) [...] CPU: 25 UID: 0 PID: 1091 Comm: NetworkManager Not tainted 6.17.0-rc1+ #1 PREEMPT(lazy) Hardware name: [...] RIP: 0010:__free_irq+0x192/0x2c0 [...] Call Trace: <TASK> free_irq+0x32/0x70 i40e_vsi_request_irq_msix.cold+0x63/0x8b [i40e] i40e_vsi_request_irq+0x79/0x80 [i40e] i40e_vsi_open+0x21f/0x2f0 [i40e] i40e_open+0x63/0x130 [i40e] __dev_open+0xfc/0x210 __dev_change_flags+0x1fc/0x240 netif_change_flags+0x27/0x70 do_setlink.isra.0+0x341/0xc70 rtnl_newlink+0x468/0x860 rtnetlink_rcv_msg+0x375/0x450 netlink_rcv_skb+0x5c/0x110 netlink_unicast+0x288/0x3c0 netlink_sendmsg+0x20d/0x430 ____sys_sendmsg+0x3a2/0x3d0 ___sys_sendmsg+0x99/0xe0 __sys_sendmsg+0x8a/0xf0 do_syscall_64+0x82/0x2c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e [...] </TASK> ---[ end trace 0000000000000000 ]--- Use the same dev_id for free_irq() as for request_irq(). I tested this with inserting code to fail intentionally.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: net: phylink: add lock for serializing concurrent pl->phydev writes with resolver Currently phylink_resolve() protects itself against concurrent phylink_bringup_phy() or phylink_disconnect_phy() calls which modify pl->phydev by relying on pl->state_mutex. The problem is that in phylink_resolve(), pl->state_mutex is in a lock inversion state with pl->phydev->lock. So pl->phydev->lock needs to be acquired prior to pl->state_mutex. But that requires dereferencing pl->phydev in the first place, and without pl->state_mutex, that is racy. Hence the reason for the extra lock. Currently it is redundant, but it will serve a functional purpose once mutex_lock(&phy->lock) will be moved outside of the mutex_lock(&pl->state_mutex) section. Another alternative considered would have been to let phylink_resolve() acquire the rtnl_mutex, which is also held when phylink_bringup_phy() and phylink_disconnect_phy() are called. But since phylink_disconnect_phy() runs under rtnl_lock(), it would deadlock with phylink_resolve() when calling flush_work(&pl->resolve). Additionally, it would have been undesirable because it would have unnecessarily blocked many other call paths as well in the entire kernel, so the smaller-scoped lock was preferred.
CVSS Score
7.0
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: i40e: remove read access to debugfs files The 'command' and 'netdev_ops' debugfs files are a legacy debugging interface supported by the i40e driver since its early days by commit 02e9c290814c ("i40e: debugfs interface"). Both of these debugfs files provide a read handler which is mostly useless, and which is implemented with questionable logic. They both use a static 256 byte buffer which is initialized to the empty string. In the case of the 'command' file this buffer is literally never used and simply wastes space. In the case of the 'netdev_ops' file, the last command written is saved here. On read, the files contents are presented as the name of the device followed by a colon and then the contents of their respective static buffer. For 'command' this will always be "<device>: ". For 'netdev_ops', this will be "<device>: <last command written>". But note the buffer is shared between all devices operated by this module. At best, it is mostly meaningless information, and at worse it could be accessed simultaneously as there doesn't appear to be any locking mechanism. We have also recently received multiple reports for both read functions about their use of snprintf and potential overflow that could result in reading arbitrary kernel memory. For the 'command' file, this is definitely impossible, since the static buffer is always zero and never written to. For the 'netdev_ops' file, it does appear to be possible, if the user carefully crafts the command input, it will be copied into the buffer, which could be large enough to cause snprintf to truncate, which then causes the copy_to_user to read beyond the length of the buffer allocated by kzalloc. A minimal fix would be to replace snprintf() with scnprintf() which would cap the return to the number of bytes written, preventing an overflow. A more involved fix would be to drop the mostly useless static buffers, saving 512 bytes and modifying the read functions to stop needing those as input. Instead, lets just completely drop the read access to these files. These are debug interfaces exposed as part of debugfs, and I don't believe that dropping read access will break any script, as the provided output is pretty useless. You can find the netdev name through other more standard interfaces, and the 'netdev_ops' interface can easily result in garbage if you issue simultaneous writes to multiple devices at once. In order to properly remove the i40e_dbg_netdev_ops_buf, we need to refactor its write function to avoid using the static buffer. Instead, use the same logic as the i40e_dbg_command_write, with an allocated buffer. Update the code to use this instead of the static buffer, and ensure we free the buffer on exit. This fixes simultaneous writes to 'netdev_ops' on multiple devices, and allows us to remove the now unused static buffer along with removing the read access.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: mm/slub: avoid accessing metadata when pointer is invalid in object_err() object_err() reports details of an object for further debugging, such as the freelist pointer, redzone, etc. However, if the pointer is invalid, attempting to access object metadata can lead to a crash since it does not point to a valid object. One known path to the crash is when alloc_consistency_checks() determines the pointer to the allocated object is invalid because of a freelist corruption, and calls object_err() to report it. The debug code should report and handle the corruption gracefully and not crash in the process. In case the pointer is NULL or check_valid_pointer() returns false for the pointer, only print the pointer value and skip accessing metadata.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: Initialize the chan_stats array to zero The adapter->chan_stats[] array is initialized in mwifiex_init_channel_scan_gap() with vmalloc(), which doesn't zero out memory. The array is filled in mwifiex_update_chan_statistics() and then the user can query the data in mwifiex_cfg80211_dump_survey(). There are two potential issues here. What if the user calls mwifiex_cfg80211_dump_survey() before the data has been filled in. Also the mwifiex_update_chan_statistics() function doesn't necessarily initialize the whole array. Since the array was not initialized at the start that could result in an information leak. Also this array is pretty small. It's a maximum of 900 bytes so it's more appropriate to use kcalloc() instead vmalloc().
CVSS Score
7.1
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: mm/memory-failure: fix VM_BUG_ON_PAGE(PagePoisoned(page)) when unpoison memory When I did memory failure tests, below panic occurs: page dumped because: VM_BUG_ON_PAGE(PagePoisoned(page)) kernel BUG at include/linux/page-flags.h:616! Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 3 PID: 720 Comm: bash Not tainted 6.10.0-rc1-00195-g148743902568 #40 RIP: 0010:unpoison_memory+0x2f3/0x590 RSP: 0018:ffffa57fc8787d60 EFLAGS: 00000246 RAX: 0000000000000037 RBX: 0000000000000009 RCX: ffff9be25fcdc9c8 RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff9be25fcdc9c0 RBP: 0000000000300000 R08: ffffffffb4956f88 R09: 0000000000009ffb R10: 0000000000000284 R11: ffffffffb4926fa0 R12: ffffe6b00c000000 R13: ffff9bdb453dfd00 R14: 0000000000000000 R15: fffffffffffffffe FS: 00007f08f04e4740(0000) GS:ffff9be25fcc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000564787a30410 CR3: 000000010d4e2000 CR4: 00000000000006f0 Call Trace: <TASK> unpoison_memory+0x2f3/0x590 simple_attr_write_xsigned.constprop.0.isra.0+0xb3/0x110 debugfs_attr_write+0x42/0x60 full_proxy_write+0x5b/0x80 vfs_write+0xd5/0x540 ksys_write+0x64/0xe0 do_syscall_64+0xb9/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f08f0314887 RSP: 002b:00007ffece710078 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f08f0314887 RDX: 0000000000000009 RSI: 0000564787a30410 RDI: 0000000000000001 RBP: 0000564787a30410 R08: 000000000000fefe R09: 000000007fffffff R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000009 R13: 00007f08f041b780 R14: 00007f08f0417600 R15: 00007f08f0416a00 </TASK> Modules linked in: hwpoison_inject ---[ end trace 0000000000000000 ]--- RIP: 0010:unpoison_memory+0x2f3/0x590 RSP: 0018:ffffa57fc8787d60 EFLAGS: 00000246 RAX: 0000000000000037 RBX: 0000000000000009 RCX: ffff9be25fcdc9c8 RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff9be25fcdc9c0 RBP: 0000000000300000 R08: ffffffffb4956f88 R09: 0000000000009ffb R10: 0000000000000284 R11: ffffffffb4926fa0 R12: ffffe6b00c000000 R13: ffff9bdb453dfd00 R14: 0000000000000000 R15: fffffffffffffffe FS: 00007f08f04e4740(0000) GS:ffff9be25fcc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000564787a30410 CR3: 000000010d4e2000 CR4: 00000000000006f0 Kernel panic - not syncing: Fatal exception Kernel Offset: 0x31c00000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) ---[ end Kernel panic - not syncing: Fatal exception ]--- The root cause is that unpoison_memory() tries to check the PG_HWPoison flags of an uninitialized page. So VM_BUG_ON_PAGE(PagePoisoned(page)) is triggered. This can be reproduced by below steps: 1.Offline memory block: echo offline > /sys/devices/system/memory/memory12/state 2.Get offlined memory pfn: page-types -b n -rlN 3.Write pfn to unpoison-pfn echo <pfn> > /sys/kernel/debug/hwpoison/unpoison-pfn This scenario can be identified by pfn_to_online_page() returning NULL. And ZONE_DEVICE pages are never expected, so we can simply fail if pfn_to_online_page() == NULL to fix the bug.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-09-23
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix recursive semaphore deadlock in fiemap call syzbot detected a OCFS2 hang due to a recursive semaphore on a FS_IOC_FIEMAP of the extent list on a specially crafted mmap file. context_switch kernel/sched/core.c:5357 [inline] __schedule+0x1798/0x4cc0 kernel/sched/core.c:6961 __schedule_loop kernel/sched/core.c:7043 [inline] schedule+0x165/0x360 kernel/sched/core.c:7058 schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:7115 rwsem_down_write_slowpath+0x872/0xfe0 kernel/locking/rwsem.c:1185 __down_write_common kernel/locking/rwsem.c:1317 [inline] __down_write kernel/locking/rwsem.c:1326 [inline] down_write+0x1ab/0x1f0 kernel/locking/rwsem.c:1591 ocfs2_page_mkwrite+0x2ff/0xc40 fs/ocfs2/mmap.c:142 do_page_mkwrite+0x14d/0x310 mm/memory.c:3361 wp_page_shared mm/memory.c:3762 [inline] do_wp_page+0x268d/0x5800 mm/memory.c:3981 handle_pte_fault mm/memory.c:6068 [inline] __handle_mm_fault+0x1033/0x5440 mm/memory.c:6195 handle_mm_fault+0x40a/0x8e0 mm/memory.c:6364 do_user_addr_fault+0x764/0x1390 arch/x86/mm/fault.c:1387 handle_page_fault arch/x86/mm/fault.c:1476 [inline] exc_page_fault+0x76/0xf0 arch/x86/mm/fault.c:1532 asm_exc_page_fault+0x26/0x30 arch/x86/include/asm/idtentry.h:623 RIP: 0010:copy_user_generic arch/x86/include/asm/uaccess_64.h:126 [inline] RIP: 0010:raw_copy_to_user arch/x86/include/asm/uaccess_64.h:147 [inline] RIP: 0010:_inline_copy_to_user include/linux/uaccess.h:197 [inline] RIP: 0010:_copy_to_user+0x85/0xb0 lib/usercopy.c:26 Code: e8 00 bc f7 fc 4d 39 fc 72 3d 4d 39 ec 77 38 e8 91 b9 f7 fc 4c 89 f7 89 de e8 47 25 5b fd 0f 01 cb 4c 89 ff 48 89 d9 4c 89 f6 <f3> a4 0f 1f 00 48 89 cb 0f 01 ca 48 89 d8 5b 41 5c 41 5d 41 5e 41 RSP: 0018:ffffc9000403f950 EFLAGS: 00050256 RAX: ffffffff84c7f101 RBX: 0000000000000038 RCX: 0000000000000038 RDX: 0000000000000000 RSI: ffffc9000403f9e0 RDI: 0000200000000060 RBP: ffffc9000403fa90 R08: ffffc9000403fa17 R09: 1ffff92000807f42 R10: dffffc0000000000 R11: fffff52000807f43 R12: 0000200000000098 R13: 00007ffffffff000 R14: ffffc9000403f9e0 R15: 0000200000000060 copy_to_user include/linux/uaccess.h:225 [inline] fiemap_fill_next_extent+0x1c0/0x390 fs/ioctl.c:145 ocfs2_fiemap+0x888/0xc90 fs/ocfs2/extent_map.c:806 ioctl_fiemap fs/ioctl.c:220 [inline] do_vfs_ioctl+0x1173/0x1430 fs/ioctl.c:532 __do_sys_ioctl fs/ioctl.c:596 [inline] __se_sys_ioctl+0x82/0x170 fs/ioctl.c:584 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f5f13850fd9 RSP: 002b:00007ffe3b3518b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000200000000000 RCX: 00007f5f13850fd9 RDX: 0000200000000040 RSI: 00000000c020660b RDI: 0000000000000004 RBP: 6165627472616568 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffe3b3518f0 R13: 00007ffe3b351b18 R14: 431bde82d7b634db R15: 00007f5f1389a03b ocfs2_fiemap() takes a read lock of the ip_alloc_sem semaphore (since v2.6.22-527-g7307de80510a) and calls fiemap_fill_next_extent() to read the extent list of this running mmap executable. The user supplied buffer to hold the fiemap information page faults calling ocfs2_page_mkwrite() which will take a write lock (since v2.6.27-38-g00dc417fa3e7) of the same semaphore. This recursive semaphore will hold filesystem locks and causes a hang of the fileystem. The ip_alloc_sem protects the inode extent list and size. Release the read semphore before calling fiemap_fill_next_extent() in ocfs2_fiemap() and ocfs2_fiemap_inline(). This does an unnecessary semaphore lock/unlock on the last extent but simplifies the error path.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-23
In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: edma: Fix memory allocation size for queue_priority_map Fix a critical memory allocation bug in edma_setup_from_hw() where queue_priority_map was allocated with insufficient memory. The code declared queue_priority_map as s8 (*)[2] (pointer to array of 2 s8), but allocated memory using sizeof(s8) instead of the correct size. This caused out-of-bounds memory writes when accessing: queue_priority_map[i][0] = i; queue_priority_map[i][1] = i; The bug manifested as kernel crashes with "Oops - undefined instruction" on ARM platforms (BeagleBoard-X15) during EDMA driver probe, as the memory corruption triggered kernel hardening features on Clang. Change the allocation to use sizeof(*queue_priority_map) which automatically gets the correct size for the 2D array structure.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-09-23
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix use-after-free when rescheduling brcmf_btcoex_info work The brcmf_btcoex_detach() only shuts down the btcoex timer, if the flag timer_on is false. However, the brcmf_btcoex_timerfunc(), which runs as timer handler, sets timer_on to false. This creates critical race conditions: 1.If brcmf_btcoex_detach() is called while brcmf_btcoex_timerfunc() is executing, it may observe timer_on as false and skip the call to timer_shutdown_sync(). 2.The brcmf_btcoex_timerfunc() may then reschedule the brcmf_btcoex_info worker after the cancel_work_sync() has been executed, resulting in use-after-free bugs. The use-after-free bugs occur in two distinct scenarios, depending on the timing of when the brcmf_btcoex_info struct is freed relative to the execution of its worker thread. Scenario 1: Freed before the worker is scheduled The brcmf_btcoex_info is deallocated before the worker is scheduled. A race condition can occur when schedule_work(&bt_local->work) is called after the target memory has been freed. The sequence of events is detailed below: CPU0 | CPU1 brcmf_btcoex_detach | brcmf_btcoex_timerfunc | bt_local->timer_on = false; if (cfg->btcoex->timer_on) | ... | cancel_work_sync(); | ... | kfree(cfg->btcoex); // FREE | | schedule_work(&bt_local->work); // USE Scenario 2: Freed after the worker is scheduled The brcmf_btcoex_info is freed after the worker has been scheduled but before or during its execution. In this case, statements within the brcmf_btcoex_handler() — such as the container_of macro and subsequent dereferences of the brcmf_btcoex_info object will cause a use-after-free access. The following timeline illustrates this scenario: CPU0 | CPU1 brcmf_btcoex_detach | brcmf_btcoex_timerfunc | bt_local->timer_on = false; if (cfg->btcoex->timer_on) | ... | cancel_work_sync(); | ... | schedule_work(); // Reschedule | kfree(cfg->btcoex); // FREE | brcmf_btcoex_handler() // Worker /* | btci = container_of(....); // USE The kfree() above could | ... also occur at any point | btci-> // USE during the worker's execution| */ | To resolve the race conditions, drop the conditional check and call timer_shutdown_sync() directly. It can deactivate the timer reliably, regardless of its current state. Once stopped, the timer_on state is then set to false.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-19
In the Linux kernel, the following vulnerability has been resolved: fs: writeback: fix use-after-free in __mark_inode_dirty() An use-after-free issue occurred when __mark_inode_dirty() get the bdi_writeback that was in the progress of switching. CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1 ...... pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __mark_inode_dirty+0x124/0x418 lr : __mark_inode_dirty+0x118/0x418 sp : ffffffc08c9dbbc0 ........ Call trace: __mark_inode_dirty+0x124/0x418 generic_update_time+0x4c/0x60 file_modified+0xcc/0xd0 ext4_buffered_write_iter+0x58/0x124 ext4_file_write_iter+0x54/0x704 vfs_write+0x1c0/0x308 ksys_write+0x74/0x10c __arm64_sys_write+0x1c/0x28 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x40/0xe4 el0t_64_sync_handler+0x120/0x12c el0t_64_sync+0x194/0x198 Root cause is: systemd-random-seed kworker ---------------------------------------------------------------------- ___mark_inode_dirty inode_switch_wbs_work_fn spin_lock(&inode->i_lock); inode_attach_wb locked_inode_to_wb_and_lock_list get inode->i_wb spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock) spin_lock(&inode->i_lock) inode_io_list_move_locked spin_unlock(&wb->list_lock) spin_unlock(&inode->i_lock) spin_lock(&old_wb->list_lock) inode_do_switch_wbs spin_lock(&inode->i_lock) inode->i_wb = new_wb spin_unlock(&inode->i_lock) spin_unlock(&old_wb->list_lock) wb_put_many(old_wb, nr_switched) cgwb_release old wb released wb_wakeup_delayed() accesses wb, then trigger the use-after-free issue Fix this race condition by holding inode spinlock until wb_wakeup_delayed() finished.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-19


Contact Us

Shodan ® - All rights reserved