In the Linux kernel, the following vulnerability has been resolved:
xhci: Remove device endpoints from bandwidth list when freeing the device
Endpoints are normally deleted from the bandwidth list when they are
dropped, before the virt device is freed.
If xHC host is dying or being removed then the endpoints aren't dropped
cleanly due to functions returning early to avoid interacting with a
non-accessible host controller.
So check and delete endpoints that are still on the bandwidth list when
freeing the virt device.
Solves a list_del corruption kernel crash when unbinding xhci-pci,
caused by xhci_mem_cleanup() when it later tried to delete already freed
endpoints from the bandwidth list.
This only affects hosts that use software bandwidth checking, which
currenty is only the xHC in intel Panther Point PCH (Ivy Bridge)
In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: avoid buffer overflow in WID string configuration
Fix the following copy overflow warning identified by Smatch checker.
drivers/net/wireless/microchip/wilc1000/wlan_cfg.c:184 wilc_wlan_parse_response_frame()
error: '__memcpy()' 'cfg->s[i]->str' copy overflow (512 vs 65537)
This patch introduces size check before accessing the memory buffer.
The checks are base on the WID type of received data from the firmware.
For WID string configuration, the size limit is determined by individual
element size in 'struct wilc_cfg_str_vals' that is maintained in 'len' field
of 'struct wilc_cfg_str'.
In the Linux kernel, the following vulnerability has been resolved:
cnic: Fix use-after-free bugs in cnic_delete_task
The original code uses cancel_delayed_work() in cnic_cm_stop_bnx2x_hw(),
which does not guarantee that the delayed work item 'delete_task' has
fully completed if it was already running. Additionally, the delayed work
item is cyclic, the flush_workqueue() in cnic_cm_stop_bnx2x_hw() only
blocks and waits for work items that were already queued to the
workqueue prior to its invocation. Any work items submitted after
flush_workqueue() is called are not included in the set of tasks that the
flush operation awaits. This means that after the cyclic work items have
finished executing, a delayed work item may still exist in the workqueue.
This leads to use-after-free scenarios where the cnic_dev is deallocated
by cnic_free_dev(), while delete_task remains active and attempt to
dereference cnic_dev in cnic_delete_task().
A typical race condition is illustrated below:
CPU 0 (cleanup) | CPU 1 (delayed work callback)
cnic_netdev_event() |
cnic_stop_hw() | cnic_delete_task()
cnic_cm_stop_bnx2x_hw() | ...
cancel_delayed_work() | /* the queue_delayed_work()
flush_workqueue() | executes after flush_workqueue()*/
| queue_delayed_work()
cnic_free_dev(dev)//free | cnic_delete_task() //new instance
| dev = cp->dev; //use
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the cyclic delayed work item is properly canceled and that any
ongoing execution of the work item completes before the cnic_dev is
deallocated. Furthermore, since cancel_delayed_work_sync() uses
__flush_work(work, true) to synchronously wait for any currently
executing instance of the work item to finish, the flush_workqueue()
becomes redundant and should be removed.
This bug was identified through static analysis. To reproduce the issue
and validate the fix, I simulated the cnic PCI device in QEMU and
introduced intentional delays — such as inserting calls to ssleep()
within the cnic_delete_task() function — to increase the likelihood
of triggering the bug.
In the Linux kernel, the following vulnerability has been resolved:
dm-stripe: fix a possible integer overflow
There's a possible integer overflow in stripe_io_hints if we have too
large chunk size. Test if the overflow happened, and if it did, don't set
limits->io_min and limits->io_opt;
In the Linux kernel, the following vulnerability has been resolved:
crypto: af_alg - Set merge to zero early in af_alg_sendmsg
If an error causes af_alg_sendmsg to abort, ctx->merge may contain
a garbage value from the previous loop. This may then trigger a
crash on the next entry into af_alg_sendmsg when it attempts to do
a merge that can't be done.
Fix this by setting ctx->merge to zero near the start of the loop.
In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-mem2mem: add lock to protect parameter num_rdy
Getting below error when using KCSAN to check the driver. Adding lock to
protect parameter num_rdy when getting the value with function:
v4l2_m2m_num_src_bufs_ready/v4l2_m2m_num_dst_bufs_ready.
kworker/u16:3: [name:report&]BUG: KCSAN: data-race in v4l2_m2m_buf_queue
kworker/u16:3: [name:report&]
kworker/u16:3: [name:report&]read-write to 0xffffff8105f35b94 of 1 bytes by task 20865 on cpu 7:
kworker/u16:3: v4l2_m2m_buf_queue+0xd8/0x10c
In the Linux kernel, the following vulnerability has been resolved:
scsi: ses: Fix slab-out-of-bounds in ses_intf_remove()
A fix for:
BUG: KASAN: slab-out-of-bounds in ses_intf_remove+0x23f/0x270 [ses]
Read of size 8 at addr ffff88a10d32e5d8 by task rmmod/12013
When edev->components is zero, accessing edev->component[0] members is
wrong.
In the Linux kernel, the following vulnerability has been resolved:
nbd: fix incomplete validation of ioctl arg
We tested and found an alarm caused by nbd_ioctl arg without verification.
The UBSAN warning calltrace like below:
UBSAN: Undefined behaviour in fs/buffer.c:1709:35
signed integer overflow:
-9223372036854775808 - 1 cannot be represented in type 'long long int'
CPU: 3 PID: 2523 Comm: syz-executor.0 Not tainted 4.19.90 #1
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x3f0 arch/arm64/kernel/time.c:78
show_stack+0x28/0x38 arch/arm64/kernel/traps.c:158
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x170/0x1dc lib/dump_stack.c:118
ubsan_epilogue+0x18/0xb4 lib/ubsan.c:161
handle_overflow+0x188/0x1dc lib/ubsan.c:192
__ubsan_handle_sub_overflow+0x34/0x44 lib/ubsan.c:206
__block_write_full_page+0x94c/0xa20 fs/buffer.c:1709
block_write_full_page+0x1f0/0x280 fs/buffer.c:2934
blkdev_writepage+0x34/0x40 fs/block_dev.c:607
__writepage+0x68/0xe8 mm/page-writeback.c:2305
write_cache_pages+0x44c/0xc70 mm/page-writeback.c:2240
generic_writepages+0xdc/0x148 mm/page-writeback.c:2329
blkdev_writepages+0x2c/0x38 fs/block_dev.c:2114
do_writepages+0xd4/0x250 mm/page-writeback.c:2344
The reason for triggering this warning is __block_write_full_page()
-> i_size_read(inode) - 1 overflow.
inode->i_size is assigned in __nbd_ioctl() -> nbd_set_size() -> bytesize.
We think it is necessary to limit the size of arg to prevent errors.
Moreover, __nbd_ioctl() -> nbd_add_socket(), arg will be cast to int.
Assuming the value of arg is 0x80000000000000001) (on a 64-bit machine),
it will become 1 after the coercion, which will return unexpected results.
Fix it by adding checks to prevent passing in too large numbers.
In the Linux kernel, the following vulnerability has been resolved:
tipc: do not update mtu if msg_max is too small in mtu negotiation
When doing link mtu negotiation, a malicious peer may send Activate msg
with a very small mtu, e.g. 4 in Shuang's testing, without checking for
the minimum mtu, l->mtu will be set to 4 in tipc_link_proto_rcv(), then
n->links[bearer_id].mtu is set to 4294967228, which is a overflow of
'4 - INT_H_SIZE - EMSG_OVERHEAD' in tipc_link_mss().
With tipc_link.mtu = 4, tipc_link_xmit() kept printing the warning:
tipc: Too large msg, purging xmit list 1 5 0 40 4!
tipc: Too large msg, purging xmit list 1 15 0 60 4!
And with tipc_link_entry.mtu 4294967228, a huge skb was allocated in
named_distribute(), and when purging it in tipc_link_xmit(), a crash
was even caused:
general protection fault, probably for non-canonical address 0x2100001011000dd: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 0 Comm: swapper/0 Kdump: loaded Not tainted 6.3.0.neta #19
RIP: 0010:kfree_skb_list_reason+0x7e/0x1f0
Call Trace:
<IRQ>
skb_release_data+0xf9/0x1d0
kfree_skb_reason+0x40/0x100
tipc_link_xmit+0x57a/0x740 [tipc]
tipc_node_xmit+0x16c/0x5c0 [tipc]
tipc_named_node_up+0x27f/0x2c0 [tipc]
tipc_node_write_unlock+0x149/0x170 [tipc]
tipc_rcv+0x608/0x740 [tipc]
tipc_udp_recv+0xdc/0x1f0 [tipc]
udp_queue_rcv_one_skb+0x33e/0x620
udp_unicast_rcv_skb.isra.72+0x75/0x90
__udp4_lib_rcv+0x56d/0xc20
ip_protocol_deliver_rcu+0x100/0x2d0
This patch fixes it by checking the new mtu against tipc_bearer_min_mtu(),
and not updating mtu if it is too small.
In the Linux kernel, the following vulnerability has been resolved:
clk: tegra: tegra124-emc: Fix potential memory leak
The tegra and tegra needs to be freed in the error handling path, otherwise
it will be leaked.