In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: serialize hash resizes and cleanups
Syzbot was able to trigger the following warning [1]
No repro found by syzbot yet but I was able to trigger similar issue
by having 2 scripts running in parallel, changing conntrack hash sizes,
and:
for j in `seq 1 1000` ; do unshare -n /bin/true >/dev/null ; done
It would take more than 5 minutes for net_namespace structures
to be cleaned up.
This is because nf_ct_iterate_cleanup() has to restart everytime
a resize happened.
By adding a mutex, we can serialize hash resizes and cleanups
and also make get_next_corpse() faster by skipping over empty
buckets.
Even without resizes in the picture, this patch considerably
speeds up network namespace dismantles.
[1]
INFO: task syz-executor.0:8312 can't die for more than 144 seconds.
task:syz-executor.0 state:R running task stack:25672 pid: 8312 ppid: 6573 flags:0x00004006
Call Trace:
context_switch kernel/sched/core.c:4955 [inline]
__schedule+0x940/0x26f0 kernel/sched/core.c:6236
preempt_schedule_common+0x45/0xc0 kernel/sched/core.c:6408
preempt_schedule_thunk+0x16/0x18 arch/x86/entry/thunk_64.S:35
__local_bh_enable_ip+0x109/0x120 kernel/softirq.c:390
local_bh_enable include/linux/bottom_half.h:32 [inline]
get_next_corpse net/netfilter/nf_conntrack_core.c:2252 [inline]
nf_ct_iterate_cleanup+0x15a/0x450 net/netfilter/nf_conntrack_core.c:2275
nf_conntrack_cleanup_net_list+0x14c/0x4f0 net/netfilter/nf_conntrack_core.c:2469
ops_exit_list+0x10d/0x160 net/core/net_namespace.c:171
setup_net+0x639/0xa30 net/core/net_namespace.c:349
copy_net_ns+0x319/0x760 net/core/net_namespace.c:470
create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0xc1/0x1f0 kernel/nsproxy.c:226
ksys_unshare+0x445/0x920 kernel/fork.c:3128
__do_sys_unshare kernel/fork.c:3202 [inline]
__se_sys_unshare kernel/fork.c:3200 [inline]
__x64_sys_unshare+0x2d/0x40 kernel/fork.c:3200
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f63da68e739
RSP: 002b:00007f63d7c05188 EFLAGS: 00000246 ORIG_RAX: 0000000000000110
RAX: ffffffffffffffda RBX: 00007f63da792f80 RCX: 00007f63da68e739
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000040000000
RBP: 00007f63da6e8cc4 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f63da792f80
R13: 00007fff50b75d3f R14: 00007f63d7c05300 R15: 0000000000022000
Showing all locks held in the system:
1 lock held by khungtaskd/27:
#0: ffffffff8b980020 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260 kernel/locking/lockdep.c:6446
2 locks held by kworker/u4:2/153:
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: arch_atomic64_set arch/x86/include/asm/atomic64_64.h:34 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: arch_atomic_long_set include/linux/atomic/atomic-long.h:41 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: atomic_long_set include/linux/atomic/atomic-instrumented.h:1198 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: set_work_data kernel/workqueue.c:634 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: set_work_pool_and_clear_pending kernel/workqueue.c:661 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x896/0x1690 kernel/workqueue.c:2268
#1: ffffc9000140fdb0 ((kfence_timer).work){+.+.}-{0:0}, at: process_one_work+0x8ca/0x1690 kernel/workqueue.c:2272
1 lock held by systemd-udevd/2970:
1 lock held by in:imklog/6258:
#0: ffff88807f970ff0 (&f->f_pos_lock){+.+.}-{3:3}, at: __fdget_pos+0xe9/0x100 fs/file.c:990
3 locks held by kworker/1:6/8158:
1 lock held by syz-executor.0/8312:
2 locks held by kworker/u4:13/9320:
1 lock held by
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc2: check return value after calling platform_get_resource()
It will cause null-ptr-deref if platform_get_resource() returns NULL,
we need check the return value.
In the Linux kernel, the following vulnerability has been resolved:
block: don't call rq_qos_ops->done_bio if the bio isn't tracked
rq_qos framework is only applied on request based driver, so:
1) rq_qos_done_bio() needn't to be called for bio based driver
2) rq_qos_done_bio() needn't to be called for bio which isn't tracked,
such as bios ended from error handling code.
Especially in bio_endio():
1) request queue is referred via bio->bi_bdev->bd_disk->queue, which
may be gone since request queue refcount may not be held in above two
cases
2) q->rq_qos may be freed in blk_cleanup_queue() when calling into
__rq_qos_done_bio()
Fix the potential kernel panic by not calling rq_qos_ops->done_bio if
the bio isn't tracked. This way is safe because both ioc_rqos_done_bio()
and blkcg_iolatency_done_bio() are nop if the bio isn't tracked.
In the Linux kernel, the following vulnerability has been resolved:
HID: betop: fix slab-out-of-bounds Write in betop_probe
Syzbot reported slab-out-of-bounds Write bug in hid-betopff driver.
The problem is the driver assumes the device must have an input report but
some malicious devices violate this assumption.
So this patch checks hid_device's input is non empty before it's been used.
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83792d) Fix NULL pointer dereference by removing unnecessary structure field
If driver read val value sufficient for
(val & 0x08) && (!(val & 0x80)) && ((val & 0x7) == ((val >> 4) & 0x7))
from device then Null pointer dereference occurs.
(It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers)
Also lm75[] does not serve a purpose anymore after switching to
devm_i2c_new_dummy_device() in w83791d_detect_subclients().
The patch fixes possible NULL pointer dereference by removing lm75[].
Found by Linux Driver Verification project (linuxtesting.org).
[groeck: Dropped unnecessary continuation lines, fixed multipline alignment]
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83791d) Fix NULL pointer dereference by removing unnecessary structure field
If driver read val value sufficient for
(val & 0x08) && (!(val & 0x80)) && ((val & 0x7) == ((val >> 4) & 0x7))
from device then Null pointer dereference occurs.
(It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers)
Also lm75[] does not serve a purpose anymore after switching to
devm_i2c_new_dummy_device() in w83791d_detect_subclients().
The patch fixes possible NULL pointer dereference by removing lm75[].
Found by Linux Driver Verification project (linuxtesting.org).
[groeck: Dropped unnecessary continuation lines, fixed multi-line alignment]
In the Linux kernel, the following vulnerability has been resolved:
net: macb: fix use after free on rmmod
plat_dev->dev->platform_data is released by platform_device_unregister(),
use of pclk and hclk is a use-after-free. Since device unregister won't
need a clk device we adjust the function call sequence to fix this issue.
[ 31.261225] BUG: KASAN: use-after-free in macb_remove+0x77/0xc6 [macb_pci]
[ 31.275563] Freed by task 306:
[ 30.276782] platform_device_release+0x25/0x80
In the Linux kernel, the following vulnerability has been resolved:
dma-debug: prevent an error message from causing runtime problems
For some drivers, that use the DMA API. This error message can be reached
several millions of times per second, causing spam to the kernel's printk
buffer and bringing the CPU usage up to 100% (so, it should be rate
limited). However, since there is at least one driver that is in the
mainline and suffers from the error condition, it is more useful to
err_printk() here instead of just rate limiting the error message (in hopes
that it will make it easier for other drivers that suffer from this issue
to be spotted).
In the Linux kernel, the following vulnerability has been resolved:
nvme-rdma: destroy cm id before destroy qp to avoid use after free
We should always destroy cm_id before destroy qp to avoid to get cma
event after qp was destroyed, which may lead to use after free.
In RDMA connection establishment error flow, don't destroy qp in cm
event handler.Just report cm_error to upper level, qp will be destroy
in nvme_rdma_alloc_queue() after destroy cm id.