In the Linux kernel, the following vulnerability has been resolved:
of: Fix double free in of_parse_phandle_with_args_map
In of_parse_phandle_with_args_map() the inner loop that
iterates through the map entries calls of_node_put(new)
to free the reference acquired by the previous iteration
of the inner loop. This assumes that the value of "new" is
NULL on the first iteration of the inner loop.
Make sure that this is true in all iterations of the outer
loop by setting "new" to NULL after its value is assigned to "cur".
Extend the unittest to detect the double free and add an additional
test case that actually triggers this path.
In the Linux kernel, the following vulnerability has been resolved:
ACPI: LPIT: Avoid u32 multiplication overflow
In lpit_update_residency() there is a possibility of overflow
in multiplication, if tsc_khz is large enough (> UINT_MAX/1000).
Change multiplication to mul_u32_u32().
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/powernv: Add a null pointer check in opal_event_init()
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure.
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a double-free in arfs_create_groups
When `in` allocated by kvzalloc fails, arfs_create_groups will free
ft->g and return an error. However, arfs_create_table, the only caller of
arfs_create_groups, will hold this error and call to
mlx5e_destroy_flow_table, in which the ft->g will be freed again.
In the Linux kernel, the following vulnerability has been resolved:
net: mvpp2: clear BM pool before initialization
Register value persist after booting the kernel using
kexec which results in kernel panic. Thus clear the
BM pool registers before initialisation to fix the issue.
In the Linux kernel, the following vulnerability has been resolved:
drm/lima: fix a memleak in lima_heap_alloc
When lima_vm_map_bo fails, the resources need to be deallocated, or
there will be memleaks.
In the Linux kernel, the following vulnerability has been resolved:
media: tc358743: register v4l2 async device only after successful setup
Ensure the device has been setup correctly before registering the v4l2
async device, thus allowing userspace to access.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-qdma: Fix a memory leak related to the queue command DMA
This dma_alloc_coherent() is undone neither in the remove function, nor in
the error handling path of fsl_qdma_probe().
Switch to the managed version to fix both issues.
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: ncm: Fix handling of zero block length packets
While connecting to a Linux host with CDC_NCM_NTB_DEF_SIZE_TX
set to 65536, it has been observed that we receive short packets,
which come at interval of 5-10 seconds sometimes and have block
length zero but still contain 1-2 valid datagrams present.
According to the NCM spec:
"If wBlockLength = 0x0000, the block is terminated by a
short packet. In this case, the USB transfer must still
be shorter than dwNtbInMaxSize or dwNtbOutMaxSize. If
exactly dwNtbInMaxSize or dwNtbOutMaxSize bytes are sent,
and the size is a multiple of wMaxPacketSize for the
given pipe, then no ZLP shall be sent.
wBlockLength= 0x0000 must be used with extreme care, because
of the possibility that the host and device may get out of
sync, and because of test issues.
wBlockLength = 0x0000 allows the sender to reduce latency by
starting to send a very large NTB, and then shortening it when
the sender discovers that there’s not sufficient data to justify
sending a large NTB"
However, there is a potential issue with the current implementation,
as it checks for the occurrence of multiple NTBs in a single
giveback by verifying if the leftover bytes to be processed is zero
or not. If the block length reads zero, we would process the same
NTB infintely because the leftover bytes is never zero and it leads
to a crash. Fix this by bailing out if block length reads zero.
In the Linux kernel, the following vulnerability has been resolved:
wifi: libertas: fix some memleaks in lbs_allocate_cmd_buffer()
In the for statement of lbs_allocate_cmd_buffer(), if the allocation of
cmdarray[i].cmdbuf fails, both cmdarray and cmdarray[i].cmdbuf needs to
be freed. Otherwise, there will be memleaks in lbs_allocate_cmd_buffer().