In the Linux kernel, the following vulnerability has been resolved:
apparmor: fix reference count leak in aa_pivotroot()
The aa_pivotroot() function has a reference counting bug in a specific
path. When aa_replace_current_label() returns on success, the function
forgets to decrement the reference count of “target”, which is
increased earlier by build_pivotroot(), causing a reference leak.
Fix it by decreasing the refcount of “target” in that path.
In the Linux kernel, the following vulnerability has been resolved:
tee: add overflow check in register_shm_helper()
With special lengths supplied by user space, register_shm_helper() has
an integer overflow when calculating the number of pages covered by a
supplied user space memory region.
This causes internal_get_user_pages_fast() a helper function of
pin_user_pages_fast() to do a NULL pointer dereference:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
Modules linked in:
CPU: 1 PID: 173 Comm: optee_example_a Not tainted 5.19.0 #11
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
pc : internal_get_user_pages_fast+0x474/0xa80
Call trace:
internal_get_user_pages_fast+0x474/0xa80
pin_user_pages_fast+0x24/0x4c
register_shm_helper+0x194/0x330
tee_shm_register_user_buf+0x78/0x120
tee_ioctl+0xd0/0x11a0
__arm64_sys_ioctl+0xa8/0xec
invoke_syscall+0x48/0x114
Fix this by adding an an explicit call to access_ok() in
tee_shm_register_user_buf() to catch an invalid user space address
early.
In the Linux kernel, the following vulnerability has been resolved:
virtio_net: fix memory leak inside XPD_TX with mergeable
When we call xdp_convert_buff_to_frame() to get xdpf, if it returns
NULL, we should check if xdp_page was allocated by xdp_linearize_page().
If it is newly allocated, it should be freed here alone. Just like any
other "goto err_xdp".
In the Linux kernel, the following vulnerability has been resolved:
net: atlantic: fix aq_vec index out of range error
The final update statement of the for loop exceeds the array range, the
dereference of self->aq_vec[i] is not checked and then leads to the
index out of range error.
Also fixed this kind of coding style in other for loop.
[ 97.937604] UBSAN: array-index-out-of-bounds in drivers/net/ethernet/aquantia/atlantic/aq_nic.c:1404:48
[ 97.937607] index 8 is out of range for type 'aq_vec_s *[8]'
[ 97.937608] CPU: 38 PID: 3767 Comm: kworker/u256:18 Not tainted 5.19.0+ #2
[ 97.937610] Hardware name: Dell Inc. Precision 7865 Tower/, BIOS 1.0.0 06/12/2022
[ 97.937611] Workqueue: events_unbound async_run_entry_fn
[ 97.937616] Call Trace:
[ 97.937617] <TASK>
[ 97.937619] dump_stack_lvl+0x49/0x63
[ 97.937624] dump_stack+0x10/0x16
[ 97.937626] ubsan_epilogue+0x9/0x3f
[ 97.937627] __ubsan_handle_out_of_bounds.cold+0x44/0x49
[ 97.937629] ? __scm_send+0x348/0x440
[ 97.937632] ? aq_vec_stop+0x72/0x80 [atlantic]
[ 97.937639] aq_nic_stop+0x1b6/0x1c0 [atlantic]
[ 97.937644] aq_suspend_common+0x88/0x90 [atlantic]
[ 97.937648] aq_pm_suspend_poweroff+0xe/0x20 [atlantic]
[ 97.937653] pci_pm_suspend+0x7e/0x1a0
[ 97.937655] ? pci_pm_suspend_noirq+0x2b0/0x2b0
[ 97.937657] dpm_run_callback+0x54/0x190
[ 97.937660] __device_suspend+0x14c/0x4d0
[ 97.937661] async_suspend+0x23/0x70
[ 97.937663] async_run_entry_fn+0x33/0x120
[ 97.937664] process_one_work+0x21f/0x3f0
[ 97.937666] worker_thread+0x4a/0x3c0
[ 97.937668] ? process_one_work+0x3f0/0x3f0
[ 97.937669] kthread+0xf0/0x120
[ 97.937671] ? kthread_complete_and_exit+0x20/0x20
[ 97.937672] ret_from_fork+0x22/0x30
[ 97.937676] </TASK>
v2. fixed "warning: variable 'aq_vec' set but not used"
v3. simplified a for loop
In the Linux kernel, the following vulnerability has been resolved:
btrfs: unset reloc control if transaction commit fails in prepare_to_relocate()
In btrfs_relocate_block_group(), the rc is allocated. Then
btrfs_relocate_block_group() calls
relocate_block_group()
prepare_to_relocate()
set_reloc_control()
that assigns rc to the variable fs_info->reloc_ctl. When
prepare_to_relocate() returns, it calls
btrfs_commit_transaction()
btrfs_start_dirty_block_groups()
btrfs_alloc_path()
kmem_cache_zalloc()
which may fail for example (or other errors could happen). When the
failure occurs, btrfs_relocate_block_group() detects the error and frees
rc and doesn't set fs_info->reloc_ctl to NULL. After that, in
btrfs_init_reloc_root(), rc is retrieved from fs_info->reloc_ctl and
then used, which may cause a use-after-free bug.
This possible bug can be triggered by calling btrfs_ioctl_balance()
before calling btrfs_ioctl_defrag().
To fix this possible bug, in prepare_to_relocate(), check if
btrfs_commit_transaction() fails. If the failure occurs,
unset_reloc_control() is called to set fs_info->reloc_ctl to NULL.
The error log in our fault-injection testing is shown as follows:
[ 58.751070] BUG: KASAN: use-after-free in btrfs_init_reloc_root+0x7ca/0x920 [btrfs]
...
[ 58.753577] Call Trace:
...
[ 58.755800] kasan_report+0x45/0x60
[ 58.756066] btrfs_init_reloc_root+0x7ca/0x920 [btrfs]
[ 58.757304] record_root_in_trans+0x792/0xa10 [btrfs]
[ 58.757748] btrfs_record_root_in_trans+0x463/0x4f0 [btrfs]
[ 58.758231] start_transaction+0x896/0x2950 [btrfs]
[ 58.758661] btrfs_defrag_root+0x250/0xc00 [btrfs]
[ 58.759083] btrfs_ioctl_defrag+0x467/0xa00 [btrfs]
[ 58.759513] btrfs_ioctl+0x3c95/0x114e0 [btrfs]
...
[ 58.768510] Allocated by task 23683:
[ 58.768777] ____kasan_kmalloc+0xb5/0xf0
[ 58.769069] __kmalloc+0x227/0x3d0
[ 58.769325] alloc_reloc_control+0x10a/0x3d0 [btrfs]
[ 58.769755] btrfs_relocate_block_group+0x7aa/0x1e20 [btrfs]
[ 58.770228] btrfs_relocate_chunk+0xf1/0x760 [btrfs]
[ 58.770655] __btrfs_balance+0x1326/0x1f10 [btrfs]
[ 58.771071] btrfs_balance+0x3150/0x3d30 [btrfs]
[ 58.771472] btrfs_ioctl_balance+0xd84/0x1410 [btrfs]
[ 58.771902] btrfs_ioctl+0x4caa/0x114e0 [btrfs]
...
[ 58.773337] Freed by task 23683:
...
[ 58.774815] kfree+0xda/0x2b0
[ 58.775038] free_reloc_control+0x1d6/0x220 [btrfs]
[ 58.775465] btrfs_relocate_block_group+0x115c/0x1e20 [btrfs]
[ 58.775944] btrfs_relocate_chunk+0xf1/0x760 [btrfs]
[ 58.776369] __btrfs_balance+0x1326/0x1f10 [btrfs]
[ 58.776784] btrfs_balance+0x3150/0x3d30 [btrfs]
[ 58.777185] btrfs_ioctl_balance+0xd84/0x1410 [btrfs]
[ 58.777621] btrfs_ioctl+0x4caa/0x114e0 [btrfs]
...
In the Linux kernel, the following vulnerability has been resolved:
iavf: Fix adminq error handling
iavf_alloc_asq_bufs/iavf_alloc_arq_bufs allocates with dma_alloc_coherent
memory for VF mailbox.
Free DMA regions for both ASQ and ARQ in case error happens during
configuration of ASQ/ARQ registers.
Without this change it is possible to see when unloading interface:
74626.583369: dma_debug_device_change: device driver has pending DMA allocations while released from device [count=32]
One of leaked entries details: [device address=0x0000000b27ff9000] [size=4096 bytes] [mapped with DMA_BIDIRECTIONAL] [mapped as coherent]
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: nomadik: Fix refcount leak in nmk_pinctrl_dt_subnode_to_map
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak."
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: mv88e6060: prevent crash on an unused port
If the port isn't a CPU port nor a user port, 'cpu_dp'
is a null pointer and a crash happened on dereferencing
it in mv88e6060_setup_port():
[ 9.575872] Unable to handle kernel NULL pointer dereference at virtual address 00000014
...
[ 9.942216] mv88e6060_setup from dsa_register_switch+0x814/0xe84
[ 9.948616] dsa_register_switch from mdio_probe+0x2c/0x54
[ 9.954433] mdio_probe from really_probe.part.0+0x98/0x2a0
[ 9.960375] really_probe.part.0 from driver_probe_device+0x30/0x10c
[ 9.967029] driver_probe_device from __device_attach_driver+0xb8/0x13c
[ 9.973946] __device_attach_driver from bus_for_each_drv+0x90/0xe0
[ 9.980509] bus_for_each_drv from __device_attach+0x110/0x184
[ 9.986632] __device_attach from bus_probe_device+0x8c/0x94
[ 9.992577] bus_probe_device from deferred_probe_work_func+0x78/0xa8
[ 9.999311] deferred_probe_work_func from process_one_work+0x290/0x73c
[ 10.006292] process_one_work from worker_thread+0x30/0x4b8
[ 10.012155] worker_thread from kthread+0xd4/0x10c
[ 10.017238] kthread from ret_from_fork+0x14/0x3c