Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.10.5  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: nfc: fdp: Fix potential memory leak in fdp_nci_send() fdp_nci_send() will call fdp_nci_i2c_write that will not free skb in the function. As a result, when fdp_nci_i2c_write() finished, the skb will memleak. fdp_nci_send() should free skb after fdp_nci_i2c_write() finished.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: RDMA/core: Fix null-ptr-deref in ib_core_cleanup() KASAN reported a null-ptr-deref error: KASAN: null-ptr-deref in range [0x0000000000000118-0x000000000000011f] CPU: 1 PID: 379 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) RIP: 0010:destroy_workqueue+0x2f/0x740 RSP: 0018:ffff888016137df8 EFLAGS: 00000202 ... Call Trace: ib_core_cleanup+0xa/0xa1 [ib_core] __do_sys_delete_module.constprop.0+0x34f/0x5b0 do_syscall_64+0x3a/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7fa1a0d221b7 ... It is because the fail of roce_gid_mgmt_init() is ignored: ib_core_init() roce_gid_mgmt_init() gid_cache_wq = alloc_ordered_workqueue # fail ... ib_core_cleanup() roce_gid_mgmt_cleanup() destroy_workqueue(gid_cache_wq) # destroy an unallocated wq Fix this by catching the fail of roce_gid_mgmt_init() in ib_core_init().
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: nfs4: Fix kmemleak when allocate slot failed If one of the slot allocate failed, should cleanup all the other allocated slots, otherwise, the allocated slots will leak: unreferenced object 0xffff8881115aa100 (size 64): comm ""mount.nfs"", pid 679, jiffies 4294744957 (age 115.037s) hex dump (first 32 bytes): 00 cc 19 73 81 88 ff ff 00 a0 5a 11 81 88 ff ff ...s......Z..... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<000000007a4c434a>] nfs4_find_or_create_slot+0x8e/0x130 [<000000005472a39c>] nfs4_realloc_slot_table+0x23f/0x270 [<00000000cd8ca0eb>] nfs40_init_client+0x4a/0x90 [<00000000128486db>] nfs4_init_client+0xce/0x270 [<000000008d2cacad>] nfs4_set_client+0x1a2/0x2b0 [<000000000e593b52>] nfs4_create_server+0x300/0x5f0 [<00000000e4425dd2>] nfs4_try_get_tree+0x65/0x110 [<00000000d3a6176f>] vfs_get_tree+0x41/0xf0 [<0000000016b5ad4c>] path_mount+0x9b3/0xdd0 [<00000000494cae71>] __x64_sys_mount+0x190/0x1d0 [<000000005d56bdec>] do_syscall_64+0x35/0x80 [<00000000687c9ae4>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: ipvs: fix WARNING in __ip_vs_cleanup_batch() During the initialization of ip_vs_conn_net_init(), if file ip_vs_conn or ip_vs_conn_sync fails to be created, the initialization is successful by default. Therefore, the ip_vs_conn or ip_vs_conn_sync file doesn't be found during the remove. The following is the stack information: name 'ip_vs_conn_sync' WARNING: CPU: 3 PID: 9 at fs/proc/generic.c:712 remove_proc_entry+0x389/0x460 Modules linked in: Workqueue: netns cleanup_net RIP: 0010:remove_proc_entry+0x389/0x460 Call Trace: <TASK> __ip_vs_cleanup_batch+0x7d/0x120 ops_exit_list+0x125/0x170 cleanup_net+0x4ea/0xb00 process_one_work+0x9bf/0x1710 worker_thread+0x665/0x1080 kthread+0x2e4/0x3a0 ret_from_fork+0x1f/0x30 </TASK>
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: net: sched: Fix use after free in red_enqueue() We can't use "skb" again after passing it to qdisc_enqueue(). This is basically identical to commit 2f09707d0c97 ("sch_sfb: Also store skb len before calling child enqueue").
CVSS Score
7.8
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: nfc: nfcmrvl: Fix potential memory leak in nfcmrvl_i2c_nci_send() nfcmrvl_i2c_nci_send() will be called by nfcmrvl_nci_send(), and skb should be freed in nfcmrvl_i2c_nci_send(). However, nfcmrvl_nci_send() will only free skb when i2c_master_send() return >=0, which means skb will memleak when i2c_master_send() failed. Free skb no matter whether i2c_master_send() succeeds.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: nfc: nxp-nci: Fix potential memory leak in nxp_nci_send() nxp_nci_send() will call nxp_nci_i2c_write(), and only free skb when nxp_nci_i2c_write() failed. However, even if the nxp_nci_i2c_write() run succeeds, the skb will not be freed in nxp_nci_i2c_write(). As the result, the skb will memleak. nxp_nci_send() should also free the skb when nxp_nci_i2c_write() succeeds.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix use-after-free caused by l2cap_reassemble_sdu Fix the race condition between the following two flows that run in parallel: 1. l2cap_reassemble_sdu -> chan->ops->recv (l2cap_sock_recv_cb) -> __sock_queue_rcv_skb. 2. bt_sock_recvmsg -> skb_recv_datagram, skb_free_datagram. An SKB can be queued by the first flow and immediately dequeued and freed by the second flow, therefore the callers of l2cap_reassemble_sdu can't use the SKB after that function returns. However, some places continue accessing struct l2cap_ctrl that resides in the SKB's CB for a short time after l2cap_reassemble_sdu returns, leading to a use-after-free condition (the stack trace is below, line numbers for kernel 5.19.8). Fix it by keeping a local copy of struct l2cap_ctrl. BUG: KASAN: use-after-free in l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth Read of size 1 at addr ffff88812025f2f0 by task kworker/u17:3/43169 Workqueue: hci0 hci_rx_work [bluetooth] Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:107 (discriminator 4)) print_report.cold (mm/kasan/report.c:314 mm/kasan/report.c:429) ? l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth kasan_report (mm/kasan/report.c:162 mm/kasan/report.c:493) ? l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth l2cap_rx (net/bluetooth/l2cap_core.c:7236 net/bluetooth/l2cap_core.c:7271) bluetooth ret_from_fork (arch/x86/entry/entry_64.S:306) </TASK> Allocated by task 43169: kasan_save_stack (mm/kasan/common.c:39) __kasan_slab_alloc (mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469) kmem_cache_alloc_node (mm/slab.h:750 mm/slub.c:3243 mm/slub.c:3293) __alloc_skb (net/core/skbuff.c:414) l2cap_recv_frag (./include/net/bluetooth/bluetooth.h:425 net/bluetooth/l2cap_core.c:8329) bluetooth l2cap_recv_acldata (net/bluetooth/l2cap_core.c:8442) bluetooth hci_rx_work (net/bluetooth/hci_core.c:3642 net/bluetooth/hci_core.c:3832) bluetooth process_one_work (kernel/workqueue.c:2289) worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2437) kthread (kernel/kthread.c:376) ret_from_fork (arch/x86/entry/entry_64.S:306) Freed by task 27920: kasan_save_stack (mm/kasan/common.c:39) kasan_set_track (mm/kasan/common.c:45) kasan_set_free_info (mm/kasan/generic.c:372) ____kasan_slab_free (mm/kasan/common.c:368 mm/kasan/common.c:328) slab_free_freelist_hook (mm/slub.c:1780) kmem_cache_free (mm/slub.c:3536 mm/slub.c:3553) skb_free_datagram (./include/net/sock.h:1578 ./include/net/sock.h:1639 net/core/datagram.c:323) bt_sock_recvmsg (net/bluetooth/af_bluetooth.c:295) bluetooth l2cap_sock_recvmsg (net/bluetooth/l2cap_sock.c:1212) bluetooth sock_read_iter (net/socket.c:1087) new_sync_read (./include/linux/fs.h:2052 fs/read_write.c:401) vfs_read (fs/read_write.c:482) ksys_read (fs/read_write.c:620) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
CVSS Score
7.8
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix ulist leaks in error paths of qgroup self tests In the test_no_shared_qgroup() and test_multiple_refs() qgroup self tests, if we fail to add the tree ref, remove the extent item or remove the extent ref, we are returning from the test function without freeing the "old_roots" ulist that was allocated by the previous calls to btrfs_find_all_roots(). Fix that by calling ulist_free() before returning.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix inode list leak during backref walking at resolve_indirect_refs() During backref walking, at resolve_indirect_refs(), if we get an error we jump to the 'out' label and call ulist_free() on the 'parents' ulist, which frees all the elements in the ulist - however that does not free any inode lists that may be attached to elements, through the 'aux' field of a ulist node, so we end up leaking lists if we have any attached to the unodes. Fix this by calling free_leaf_list() instead of ulist_free() when we exit from resolve_indirect_refs(). The static function free_leaf_list() is moved up for this to be possible and it's slightly simplified by removing unnecessary code.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01


Contact Us

Shodan ® - All rights reserved