In the Linux kernel, the following vulnerability has been resolved:
zram: fix slot write race condition
Parallel concurrent writes to the same zram index result in leaked
zsmalloc handles. Schematically we can have something like this:
CPU0 CPU1
zram_slot_lock()
zs_free(handle)
zram_slot_lock()
zram_slot_lock()
zs_free(handle)
zram_slot_lock()
compress compress
handle = zs_malloc() handle = zs_malloc()
zram_slot_lock
zram_set_handle(handle)
zram_slot_lock
zram_slot_lock
zram_set_handle(handle)
zram_slot_lock
Either CPU0 or CPU1 zsmalloc handle will leak because zs_free() is done
too early. In fact, we need to reset zram entry right before we set its
new handle, all under the same slot lock scope.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: smbdirect: verify remaining_data_length respects max_fragmented_recv_size
This is inspired by the check for data_offset + data_length.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: smbdirect: validate data_offset and data_length field of smb_direct_data_transfer
If data_offset and data_length of smb_direct_data_transfer struct are
invalid, out of bounds issue could happen.
This patch validate data_offset and data_length field in recv_done.
In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: Fix use-after-free bugs in otx2_sync_tstamp()
The original code relies on cancel_delayed_work() in otx2_ptp_destroy(),
which does not ensure that the delayed work item synctstamp_work has fully
completed if it was already running. This leads to use-after-free scenarios
where otx2_ptp is deallocated by otx2_ptp_destroy(), while synctstamp_work
remains active and attempts to dereference otx2_ptp in otx2_sync_tstamp().
Furthermore, the synctstamp_work is cyclic, the likelihood of triggering
the bug is nonnegligible.
A typical race condition is illustrated below:
CPU 0 (cleanup) | CPU 1 (delayed work callback)
otx2_remove() |
otx2_ptp_destroy() | otx2_sync_tstamp()
cancel_delayed_work() |
kfree(ptp) |
| ptp = container_of(...); //UAF
| ptp-> //UAF
This is confirmed by a KASAN report:
BUG: KASAN: slab-use-after-free in __run_timer_base.part.0+0x7d7/0x8c0
Write of size 8 at addr ffff88800aa09a18 by task bash/136
...
Call Trace:
<IRQ>
dump_stack_lvl+0x55/0x70
print_report+0xcf/0x610
? __run_timer_base.part.0+0x7d7/0x8c0
kasan_report+0xb8/0xf0
? __run_timer_base.part.0+0x7d7/0x8c0
__run_timer_base.part.0+0x7d7/0x8c0
? __pfx___run_timer_base.part.0+0x10/0x10
? __pfx_read_tsc+0x10/0x10
? ktime_get+0x60/0x140
? lapic_next_event+0x11/0x20
? clockevents_program_event+0x1d4/0x2a0
run_timer_softirq+0xd1/0x190
handle_softirqs+0x16a/0x550
irq_exit_rcu+0xaf/0xe0
sysvec_apic_timer_interrupt+0x70/0x80
</IRQ>
...
Allocated by task 1:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7f/0x90
otx2_ptp_init+0xb1/0x860
otx2_probe+0x4eb/0xc30
local_pci_probe+0xdc/0x190
pci_device_probe+0x2fe/0x470
really_probe+0x1ca/0x5c0
__driver_probe_device+0x248/0x310
driver_probe_device+0x44/0x120
__driver_attach+0xd2/0x310
bus_for_each_dev+0xed/0x170
bus_add_driver+0x208/0x500
driver_register+0x132/0x460
do_one_initcall+0x89/0x300
kernel_init_freeable+0x40d/0x720
kernel_init+0x1a/0x150
ret_from_fork+0x10c/0x1a0
ret_from_fork_asm+0x1a/0x30
Freed by task 136:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3a/0x60
__kasan_slab_free+0x3f/0x50
kfree+0x137/0x370
otx2_ptp_destroy+0x38/0x80
otx2_remove+0x10d/0x4c0
pci_device_remove+0xa6/0x1d0
device_release_driver_internal+0xf8/0x210
pci_stop_bus_device+0x105/0x150
pci_stop_and_remove_bus_device_locked+0x15/0x30
remove_store+0xcc/0xe0
kernfs_fop_write_iter+0x2c3/0x440
vfs_write+0x871/0xd70
ksys_write+0xee/0x1c0
do_syscall_64+0xac/0x280
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the delayed work item is properly canceled before the otx2_ptp is
deallocated.
This bug was initially identified through static analysis. To reproduce
and test it, I simulated the OcteonTX2 PCI device in QEMU and introduced
artificial delays within the otx2_sync_tstamp() function to increase the
likelihood of triggering the bug.
In the Linux kernel, the following vulnerability has been resolved:
cnic: Fix use-after-free bugs in cnic_delete_task
The original code uses cancel_delayed_work() in cnic_cm_stop_bnx2x_hw(),
which does not guarantee that the delayed work item 'delete_task' has
fully completed if it was already running. Additionally, the delayed work
item is cyclic, the flush_workqueue() in cnic_cm_stop_bnx2x_hw() only
blocks and waits for work items that were already queued to the
workqueue prior to its invocation. Any work items submitted after
flush_workqueue() is called are not included in the set of tasks that the
flush operation awaits. This means that after the cyclic work items have
finished executing, a delayed work item may still exist in the workqueue.
This leads to use-after-free scenarios where the cnic_dev is deallocated
by cnic_free_dev(), while delete_task remains active and attempt to
dereference cnic_dev in cnic_delete_task().
A typical race condition is illustrated below:
CPU 0 (cleanup) | CPU 1 (delayed work callback)
cnic_netdev_event() |
cnic_stop_hw() | cnic_delete_task()
cnic_cm_stop_bnx2x_hw() | ...
cancel_delayed_work() | /* the queue_delayed_work()
flush_workqueue() | executes after flush_workqueue()*/
| queue_delayed_work()
cnic_free_dev(dev)//free | cnic_delete_task() //new instance
| dev = cp->dev; //use
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the cyclic delayed work item is properly canceled and that any
ongoing execution of the work item completes before the cnic_dev is
deallocated. Furthermore, since cancel_delayed_work_sync() uses
__flush_work(work, true) to synchronously wait for any currently
executing instance of the work item to finish, the flush_workqueue()
becomes redundant and should be removed.
This bug was identified through static analysis. To reproduce the issue
and validate the fix, I simulated the cnic PCI device in QEMU and
introduced intentional delays — such as inserting calls to ssleep()
within the cnic_delete_task() function — to increase the likelihood
of triggering the bug.
In the Linux kernel, the following vulnerability has been resolved:
tls: make sure to abort the stream if headers are bogus
Normally we wait for the socket to buffer up the whole record
before we service it. If the socket has a tiny buffer, however,
we read out the data sooner, to prevent connection stalls.
Make sure that we abort the connection when we find out late
that the record is actually invalid. Retrying the parsing is
fine in itself but since we copy some more data each time
before we parse we can overflow the allocated skb space.
Constructing a scenario in which we're under pressure without
enough data in the socket to parse the length upfront is quite
hard. syzbot figured out a way to do this by serving us the header
in small OOB sends, and then filling in the recvbuf with a large
normal send.
Make sure that tls_rx_msg_size() aborts strp, if we reach
an invalid record there's really no way to recover.
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Harden uplink netdev access against device unbind
The function mlx5_uplink_netdev_get() gets the uplink netdevice
pointer from mdev->mlx5e_res.uplink_netdev. However, the netdevice can
be removed and its pointer cleared when unbound from the mlx5_core.eth
driver. This results in a NULL pointer, causing a kernel panic.
BUG: unable to handle page fault for address: 0000000000001300
at RIP: 0010:mlx5e_vport_rep_load+0x22a/0x270 [mlx5_core]
Call Trace:
<TASK>
mlx5_esw_offloads_rep_load+0x68/0xe0 [mlx5_core]
esw_offloads_enable+0x593/0x910 [mlx5_core]
mlx5_eswitch_enable_locked+0x341/0x420 [mlx5_core]
mlx5_devlink_eswitch_mode_set+0x17e/0x3a0 [mlx5_core]
devlink_nl_eswitch_set_doit+0x60/0xd0
genl_family_rcv_msg_doit+0xe0/0x130
genl_rcv_msg+0x183/0x290
netlink_rcv_skb+0x4b/0xf0
genl_rcv+0x24/0x40
netlink_unicast+0x255/0x380
netlink_sendmsg+0x1f3/0x420
__sock_sendmsg+0x38/0x60
__sys_sendto+0x119/0x180
do_syscall_64+0x53/0x1d0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Ensure the pointer is valid before use by checking it for NULL. If it
is valid, immediately call netdev_hold() to take a reference, and
preventing the netdevice from being freed while it is in use.
In the Linux kernel, the following vulnerability has been resolved:
ice: fix Rx page leak on multi-buffer frames
The ice_put_rx_mbuf() function handles calling ice_put_rx_buf() for each
buffer in the current frame. This function was introduced as part of
handling multi-buffer XDP support in the ice driver.
It works by iterating over the buffers from first_desc up to 1 plus the
total number of fragments in the frame, cached from before the XDP program
was executed.
If the hardware posts a descriptor with a size of 0, the logic used in
ice_put_rx_mbuf() breaks. Such descriptors get skipped and don't get added
as fragments in ice_add_xdp_frag. Since the buffer isn't counted as a
fragment, we do not iterate over it in ice_put_rx_mbuf(), and thus we don't
call ice_put_rx_buf().
Because we don't call ice_put_rx_buf(), we don't attempt to re-use the
page or free it. This leaves a stale page in the ring, as we don't
increment next_to_alloc.
The ice_reuse_rx_page() assumes that the next_to_alloc has been incremented
properly, and that it always points to a buffer with a NULL page. Since
this function doesn't check, it will happily recycle a page over the top
of the next_to_alloc buffer, losing track of the old page.
Note that this leak only occurs for multi-buffer frames. The
ice_put_rx_mbuf() function always handles at least one buffer, so a
single-buffer frame will always get handled correctly. It is not clear
precisely why the hardware hands us descriptors with a size of 0 sometimes,
but it happens somewhat regularly with "jumbo frames" used by 9K MTU.
To fix ice_put_rx_mbuf(), we need to make sure to call ice_put_rx_buf() on
all buffers between first_desc and next_to_clean. Borrow the logic of a
similar function in i40e used for this same purpose. Use the same logic
also in ice_get_pgcnts().
Instead of iterating over just the number of fragments, use a loop which
iterates until the current index reaches to the next_to_clean element just
past the current frame. Unlike i40e, the ice_put_rx_mbuf() function does
call ice_put_rx_buf() on the last buffer of the frame indicating the end of
packet.
For non-linear (multi-buffer) frames, we need to take care when adjusting
the pagecnt_bias. An XDP program might release fragments from the tail of
the frame, in which case that fragment page is already released. Only
update the pagecnt_bias for the first descriptor and fragments still
remaining post-XDP program. Take care to only access the shared info for
fragmented buffers, as this avoids a significant cache miss.
The xdp_xmit value only needs to be updated if an XDP program is run, and
only once per packet. Drop the xdp_xmit pointer argument from
ice_put_rx_mbuf(). Instead, set xdp_xmit in the ice_clean_rx_irq() function
directly. This avoids needing to pass the argument and avoids an extra
bit-wise OR for each buffer in the frame.
Move the increment of the ntc local variable to ensure its updated *before*
all calls to ice_get_pgcnts() or ice_put_rx_mbuf(), as the loop logic
requires the index of the element just after the current frame.
Now that we use an index pointer in the ring to identify the packet, we no
longer need to track or cache the number of fragments in the rx_ring.
In the Linux kernel, the following vulnerability has been resolved:
smb: client: let recv_done verify data_offset, data_length and remaining_data_length
This is inspired by the related server fixes.
In the Linux kernel, the following vulnerability has been resolved:
drm: bridge: anx7625: Fix NULL pointer dereference with early IRQ
If the interrupt occurs before resource initialization is complete, the
interrupt handler/worker may access uninitialized data such as the I2C
tcpc_client device, potentially leading to NULL pointer dereference.