In the Linux kernel, the following vulnerability has been resolved:
sched: address a potential NULL pointer dereference in the GRED scheduler.
If kzalloc in gred_init returns a NULL pointer, the code follows the
error handling path, invoking gred_destroy. This, in turn, calls
gred_offload, where memset could receive a NULL pointer as input,
potentially leading to a kernel crash.
When table->opt is NULL in gred_init(), gred_change_table_def()
is not called yet, so it is not necessary to call ->ndo_setup_tc()
in gred_offload().
In the Linux kernel, the following vulnerability has been resolved:
ice: fix memory leak in aRFS after reset
Fix aRFS (accelerated Receive Flow Steering) structures memory leak by
adding a checker to verify if aRFS memory is already allocated while
configuring VSI. aRFS objects are allocated in two cases:
- as part of VSI initialization (at probe), and
- as part of reset handling
However, VSI reconfiguration executed during reset involves memory
allocation one more time, without prior releasing already allocated
resources. This led to the memory leak with the following signature:
[root@os-delivery ~]# cat /sys/kernel/debug/kmemleak
unreferenced object 0xff3c1ca7252e6000 (size 8192):
comm "kworker/0:0", pid 8, jiffies 4296833052
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 0):
[<ffffffff991ec485>] __kmalloc_cache_noprof+0x275/0x340
[<ffffffffc0a6e06a>] ice_init_arfs+0x3a/0xe0 [ice]
[<ffffffffc09f1027>] ice_vsi_cfg_def+0x607/0x850 [ice]
[<ffffffffc09f244b>] ice_vsi_setup+0x5b/0x130 [ice]
[<ffffffffc09c2131>] ice_init+0x1c1/0x460 [ice]
[<ffffffffc09c64af>] ice_probe+0x2af/0x520 [ice]
[<ffffffff994fbcd3>] local_pci_probe+0x43/0xa0
[<ffffffff98f07103>] work_for_cpu_fn+0x13/0x20
[<ffffffff98f0b6d9>] process_one_work+0x179/0x390
[<ffffffff98f0c1e9>] worker_thread+0x239/0x340
[<ffffffff98f14abc>] kthread+0xcc/0x100
[<ffffffff98e45a6d>] ret_from_fork+0x2d/0x50
[<ffffffff98e083ba>] ret_from_fork_asm+0x1a/0x30
...
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix out-of-bound accesses
[WHAT & HOW]
hpo_stream_to_link_encoder_mapping has size MAX_HPO_DP2_ENCODERS(=4),
but location can have size up to 6. As a result, it is necessary to
check location against MAX_HPO_DP2_ENCODERS.
Similiarly, disp_cfg_stream_location can be used as an array index which
should be 0..5, so the ASSERT's conditions should be less without equal.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix slab-use-after-free on hdcp_work
[Why]
A slab-use-after-free is reported when HDCP is destroyed but the
property_validate_dwork queue is still running.
[How]
Cancel the delayed work when destroying workqueue.
(cherry picked from commit 725a04ba5a95e89c89633d4322430cfbca7ce128)
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Bridge, fix the crash caused by LAG state check
When removing LAG device from bridge, NETDEV_CHANGEUPPER event is
triggered. Driver finds the lower devices (PFs) to flush all the
offloaded entries. And mlx5_lag_is_shared_fdb is checked, it returns
false if one of PF is unloaded. In such case,
mlx5_esw_bridge_lag_rep_get() and its caller return NULL, instead of
the alive PF, and the flush is skipped.
Besides, the bridge fdb entry's lastuse is updated in mlx5 bridge
event handler. But this SWITCHDEV_FDB_ADD_TO_BRIDGE event can be
ignored in this case because the upper interface for bond is deleted,
and the entry will never be aged because lastuse is never updated.
To make things worse, as the entry is alive, mlx5 bridge workqueue
keeps sending that event, which is then handled by kernel bridge
notifier. It causes the following crash when accessing the passed bond
netdev which is already destroyed.
To fix this issue, remove such checks. LAG state is already checked in
commit 15f8f168952f ("net/mlx5: Bridge, verify LAG state when adding
bond to bridge"), driver still need to skip offload if LAG becomes
invalid state after initialization.
Oops: stack segment: 0000 [#1] SMP
CPU: 3 UID: 0 PID: 23695 Comm: kworker/u40:3 Tainted: G OE 6.11.0_mlnx #1
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Workqueue: mlx5_bridge_wq mlx5_esw_bridge_update_work [mlx5_core]
RIP: 0010:br_switchdev_event+0x2c/0x110 [bridge]
Code: 44 00 00 48 8b 02 48 f7 00 00 02 00 00 74 69 41 54 55 53 48 83 ec 08 48 8b a8 08 01 00 00 48 85 ed 74 4a 48 83 fe 02 48 89 d3 <4c> 8b 65 00 74 23 76 49 48 83 fe 05 74 7e 48 83 fe 06 75 2f 0f b7
RSP: 0018:ffffc900092cfda0 EFLAGS: 00010297
RAX: ffff888123bfe000 RBX: ffffc900092cfe08 RCX: 00000000ffffffff
RDX: ffffc900092cfe08 RSI: 0000000000000001 RDI: ffffffffa0c585f0
RBP: 6669746f6e690a30 R08: 0000000000000000 R09: ffff888123ae92c8
R10: 0000000000000000 R11: fefefefefefefeff R12: ffff888123ae9c60
R13: 0000000000000001 R14: ffffc900092cfe08 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88852c980000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f15914c8734 CR3: 0000000002830005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __die_body+0x1a/0x60
? die+0x38/0x60
? do_trap+0x10b/0x120
? do_error_trap+0x64/0xa0
? exc_stack_segment+0x33/0x50
? asm_exc_stack_segment+0x22/0x30
? br_switchdev_event+0x2c/0x110 [bridge]
? sched_balance_newidle.isra.149+0x248/0x390
notifier_call_chain+0x4b/0xa0
atomic_notifier_call_chain+0x16/0x20
mlx5_esw_bridge_update+0xec/0x170 [mlx5_core]
mlx5_esw_bridge_update_work+0x19/0x40 [mlx5_core]
process_scheduled_works+0x81/0x390
worker_thread+0x106/0x250
? bh_worker+0x110/0x110
kthread+0xb7/0xe0
? kthread_park+0x80/0x80
ret_from_fork+0x2d/0x50
? kthread_park+0x80/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
net_sched: Prevent creation of classes with TC_H_ROOT
The function qdisc_tree_reduce_backlog() uses TC_H_ROOT as a termination
condition when traversing up the qdisc tree to update parent backlog
counters. However, if a class is created with classid TC_H_ROOT, the
traversal terminates prematurely at this class instead of reaching the
actual root qdisc, causing parent statistics to be incorrectly maintained.
In case of DRR, this could lead to a crash as reported by Mingi Cho.
Prevent the creation of any Qdisc class with classid TC_H_ROOT
(0xFFFFFFFF) across all qdisc types, as suggested by Jamal.
In the Linux kernel, the following vulnerability has been resolved:
net: mctp: unshare packets when reassembling
Ensure that the frag_list used for reassembly isn't shared with other
packets. This avoids incorrect reassembly when packets are cloned, and
prevents a memory leak due to circular references between fragments and
their skb_shared_info.
The upcoming MCTP-over-USB driver uses skb_clone which can trigger the
problem - other MCTP drivers don't share SKBs.
A kunit test is added to reproduce the issue.
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: handle errors in mlx5_chains_create_table()
In mlx5_chains_create_table(), the return value of mlx5_get_fdb_sub_ns()
and mlx5_get_flow_namespace() must be checked to prevent NULL pointer
dereferences. If either function fails, the function should log error
message with mlx5_core_warn() and return error pointer.
In the Linux kernel, the following vulnerability has been resolved:
fbdev: hyperv_fb: Allow graceful removal of framebuffer
When a Hyper-V framebuffer device is unbind, hyperv_fb driver tries to
release the framebuffer forcefully. If this framebuffer is in use it
produce the following WARN and hence this framebuffer is never released.
[ 44.111220] WARNING: CPU: 35 PID: 1882 at drivers/video/fbdev/core/fb_info.c:70 framebuffer_release+0x2c/0x40
< snip >
[ 44.111289] Call Trace:
[ 44.111290] <TASK>
[ 44.111291] ? show_regs+0x6c/0x80
[ 44.111295] ? __warn+0x8d/0x150
[ 44.111298] ? framebuffer_release+0x2c/0x40
[ 44.111300] ? report_bug+0x182/0x1b0
[ 44.111303] ? handle_bug+0x6e/0xb0
[ 44.111306] ? exc_invalid_op+0x18/0x80
[ 44.111308] ? asm_exc_invalid_op+0x1b/0x20
[ 44.111311] ? framebuffer_release+0x2c/0x40
[ 44.111313] ? hvfb_remove+0x86/0xa0 [hyperv_fb]
[ 44.111315] vmbus_remove+0x24/0x40 [hv_vmbus]
[ 44.111323] device_remove+0x40/0x80
[ 44.111325] device_release_driver_internal+0x20b/0x270
[ 44.111327] ? bus_find_device+0xb3/0xf0
Fix this by moving the release of framebuffer and assosiated memory
to fb_ops.fb_destroy function, so that framebuffer framework handles
it gracefully.
While we fix this, also replace manual registrations/unregistration of
framebuffer with devm_register_framebuffer.