Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.19.303  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: net_sched: skbprio: Remove overly strict queue assertions In the current implementation, skbprio enqueue/dequeue contains an assertion that fails under certain conditions when SKBPRIO is used as a child qdisc under TBF with specific parameters. The failure occurs because TBF sometimes peeks at packets in the child qdisc without actually dequeuing them when tokens are unavailable. This peek operation creates a discrepancy between the parent and child qdisc queue length counters. When TBF later receives a high-priority packet, SKBPRIO's queue length may show a different value than what's reflected in its internal priority queue tracking, triggering the assertion. The fix removes this overly strict assertions in SKBPRIO, they are not necessary at all.
CVSS Score
5.5
EPSS Score
0.001
Published
2025-04-18
In the Linux kernel, the following vulnerability has been resolved: ext4: fix OOB read when checking dotdot dir Mounting a corrupted filesystem with directory which contains '.' dir entry with rec_len == block size results in out-of-bounds read (later on, when the corrupted directory is removed). ext4_empty_dir() assumes every ext4 directory contains at least '.' and '..' as directory entries in the first data block. It first loads the '.' dir entry, performs sanity checks by calling ext4_check_dir_entry() and then uses its rec_len member to compute the location of '..' dir entry (in ext4_next_entry). It assumes the '..' dir entry fits into the same data block. If the rec_len of '.' is precisely one block (4KB), it slips through the sanity checks (it is considered the last directory entry in the data block) and leaves "struct ext4_dir_entry_2 *de" point exactly past the memory slot allocated to the data block. The following call to ext4_check_dir_entry() on new value of de then dereferences this pointer which results in out-of-bounds mem access. Fix this by extending __ext4_check_dir_entry() to check for '.' dir entries that reach the end of data block. Make sure to ignore the phony dir entries for checksum (by checking name_len for non-zero). Note: This is reported by KASAN as use-after-free in case another structure was recently freed from the slot past the bound, but it is really an OOB read. This issue was found by syzkaller tool. Call Trace: [ 38.594108] BUG: KASAN: slab-use-after-free in __ext4_check_dir_entry+0x67e/0x710 [ 38.594649] Read of size 2 at addr ffff88802b41a004 by task syz-executor/5375 [ 38.595158] [ 38.595288] CPU: 0 UID: 0 PID: 5375 Comm: syz-executor Not tainted 6.14.0-rc7 #1 [ 38.595298] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [ 38.595304] Call Trace: [ 38.595308] <TASK> [ 38.595311] dump_stack_lvl+0xa7/0xd0 [ 38.595325] print_address_description.constprop.0+0x2c/0x3f0 [ 38.595339] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595349] print_report+0xaa/0x250 [ 38.595359] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595368] ? kasan_addr_to_slab+0x9/0x90 [ 38.595378] kasan_report+0xab/0xe0 [ 38.595389] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595400] __ext4_check_dir_entry+0x67e/0x710 [ 38.595410] ext4_empty_dir+0x465/0x990 [ 38.595421] ? __pfx_ext4_empty_dir+0x10/0x10 [ 38.595432] ext4_rmdir.part.0+0x29a/0xd10 [ 38.595441] ? __dquot_initialize+0x2a7/0xbf0 [ 38.595455] ? __pfx_ext4_rmdir.part.0+0x10/0x10 [ 38.595464] ? __pfx___dquot_initialize+0x10/0x10 [ 38.595478] ? down_write+0xdb/0x140 [ 38.595487] ? __pfx_down_write+0x10/0x10 [ 38.595497] ext4_rmdir+0xee/0x140 [ 38.595506] vfs_rmdir+0x209/0x670 [ 38.595517] ? lookup_one_qstr_excl+0x3b/0x190 [ 38.595529] do_rmdir+0x363/0x3c0 [ 38.595537] ? __pfx_do_rmdir+0x10/0x10 [ 38.595544] ? strncpy_from_user+0x1ff/0x2e0 [ 38.595561] __x64_sys_unlinkat+0xf0/0x130 [ 38.595570] do_syscall_64+0x5b/0x180 [ 38.595583] entry_SYSCALL_64_after_hwframe+0x76/0x7e
CVSS Score
7.1
EPSS Score
0.001
Published
2025-04-18
In the Linux kernel, the following vulnerability has been resolved: dlm: prevent NPD when writing a positive value to event_done do_uevent returns the value written to event_done. In case it is a positive value, new_lockspace would undo all the work, and lockspace would not be set. __dlm_new_lockspace, however, would treat that positive value as a success due to commit 8511a2728ab8 ("dlm: fix use count with multiple joins"). Down the line, device_create_lockspace would pass that NULL lockspace to dlm_find_lockspace_local, leading to a NULL pointer dereference. Treating such positive values as successes prevents the problem. Given this has been broken for so long, this is unlikely to break userspace expectations.
CVSS Score
5.5
EPSS Score
0.001
Published
2025-04-16
In the Linux kernel, the following vulnerability has been resolved: thermal: int340x: Add NULL check for adev Not all devices have an ACPI companion fwnode, so adev might be NULL. This is similar to the commit cd2fd6eab480 ("platform/x86: int3472: Check for adev == NULL"). Add a check for adev not being set and return -ENODEV in that case to avoid a possible NULL pointer deref in int3402_thermal_probe(). Note, under the same directory, int3400_thermal_probe() has such a check. [ rjw: Subject edit, added Fixes: ]
CVSS Score
5.5
EPSS Score
0.001
Published
2025-04-16
In the Linux kernel, the following vulnerability has been resolved: ext4: fix out-of-bound read in ext4_xattr_inode_dec_ref_all() There's issue as follows: BUG: KASAN: use-after-free in ext4_xattr_inode_dec_ref_all+0x6ff/0x790 Read of size 4 at addr ffff88807b003000 by task syz-executor.0/15172 CPU: 3 PID: 15172 Comm: syz-executor.0 Call Trace: __dump_stack lib/dump_stack.c:82 [inline] dump_stack+0xbe/0xfd lib/dump_stack.c:123 print_address_description.constprop.0+0x1e/0x280 mm/kasan/report.c:400 __kasan_report.cold+0x6c/0x84 mm/kasan/report.c:560 kasan_report+0x3a/0x50 mm/kasan/report.c:585 ext4_xattr_inode_dec_ref_all+0x6ff/0x790 fs/ext4/xattr.c:1137 ext4_xattr_delete_inode+0x4c7/0xda0 fs/ext4/xattr.c:2896 ext4_evict_inode+0xb3b/0x1670 fs/ext4/inode.c:323 evict+0x39f/0x880 fs/inode.c:622 iput_final fs/inode.c:1746 [inline] iput fs/inode.c:1772 [inline] iput+0x525/0x6c0 fs/inode.c:1758 ext4_orphan_cleanup fs/ext4/super.c:3298 [inline] ext4_fill_super+0x8c57/0xba40 fs/ext4/super.c:5300 mount_bdev+0x355/0x410 fs/super.c:1446 legacy_get_tree+0xfe/0x220 fs/fs_context.c:611 vfs_get_tree+0x8d/0x2f0 fs/super.c:1576 do_new_mount fs/namespace.c:2983 [inline] path_mount+0x119a/0x1ad0 fs/namespace.c:3316 do_mount+0xfc/0x110 fs/namespace.c:3329 __do_sys_mount fs/namespace.c:3540 [inline] __se_sys_mount+0x219/0x2e0 fs/namespace.c:3514 do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x67/0xd1 Memory state around the buggy address: ffff88807b002f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff88807b002f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff88807b003000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff88807b003080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff88807b003100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff Above issue happens as ext4_xattr_delete_inode() isn't check xattr is valid if xattr is in inode. To solve above issue call xattr_check_inode() check if xattr if valid in inode. In fact, we can directly verify in ext4_iget_extra_inode(), so that there is no divergent verification.
CVSS Score
7.1
EPSS Score
0.001
Published
2025-04-16
In the Linux kernel, the following vulnerability has been resolved: md/raid1,raid10: don't ignore IO flags If blk-wbt is enabled by default, it's found that raid write performance is quite bad because all IO are throttled by wbt of underlying disks, due to flag REQ_IDLE is ignored. And turns out this behaviour exist since blk-wbt is introduced. Other than REQ_IDLE, other flags should not be ignored as well, for example REQ_META can be set for filesystems, clearing it can cause priority reverse problems; And REQ_NOWAIT should not be cleared as well, because io will wait instead of failing directly in underlying disks. Fix those problems by keep IO flags from master bio. Fises: f51d46d0e7cb ("md: add support for REQ_NOWAIT")
CVSS Score
5.5
EPSS Score
0.001
Published
2025-04-16
In the Linux kernel, the following vulnerability has been resolved: ax25: Remove broken autobind Binding AX25 socket by using the autobind feature leads to memory leaks in ax25_connect() and also refcount leaks in ax25_release(). Memory leak was detected with kmemleak: ================================================================ unreferenced object 0xffff8880253cd680 (size 96): backtrace: __kmalloc_node_track_caller_noprof (./include/linux/kmemleak.h:43) kmemdup_noprof (mm/util.c:136) ax25_rt_autobind (net/ax25/ax25_route.c:428) ax25_connect (net/ax25/af_ax25.c:1282) __sys_connect_file (net/socket.c:2045) __sys_connect (net/socket.c:2064) __x64_sys_connect (net/socket.c:2067) do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) ================================================================ When socket is bound, refcounts must be incremented the way it is done in ax25_bind() and ax25_setsockopt() (SO_BINDTODEVICE). In case of autobind, the refcounts are not incremented. This bug leads to the following issue reported by Syzkaller: ================================================================ ax25_connect(): syz-executor318 uses autobind, please contact jreuter@yaina.de ------------[ cut here ]------------ refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 0 PID: 5317 at lib/refcount.c:31 refcount_warn_saturate+0xfa/0x1d0 lib/refcount.c:31 Modules linked in: CPU: 0 UID: 0 PID: 5317 Comm: syz-executor318 Not tainted 6.14.0-rc4-syzkaller-00278-gece144f151ac #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:refcount_warn_saturate+0xfa/0x1d0 lib/refcount.c:31 ... Call Trace: <TASK> __refcount_dec include/linux/refcount.h:336 [inline] refcount_dec include/linux/refcount.h:351 [inline] ref_tracker_free+0x6af/0x7e0 lib/ref_tracker.c:236 netdev_tracker_free include/linux/netdevice.h:4302 [inline] netdev_put include/linux/netdevice.h:4319 [inline] ax25_release+0x368/0x960 net/ax25/af_ax25.c:1080 __sock_release net/socket.c:647 [inline] sock_close+0xbc/0x240 net/socket.c:1398 __fput+0x3e9/0x9f0 fs/file_table.c:464 __do_sys_close fs/open.c:1580 [inline] __se_sys_close fs/open.c:1565 [inline] __x64_sys_close+0x7f/0x110 fs/open.c:1565 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... </TASK> ================================================================ Considering the issues above and the comments left in the code that say: "check if we can remove this feature. It is broken."; "autobinding in this may or may not work"; - it is better to completely remove this feature than to fix it because it is broken and leads to various kinds of memory bugs. Now calling connect() without first binding socket will result in an error (-EINVAL). Userspace software that relies on the autobind feature might get broken. However, this feature does not seem widely used with this specific driver as it was not reliable at any point of time, and it is already broken anyway. E.g. ax25-tools and ax25-apps packages for popular distributions do not use the autobind feature for AF_AX25. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVSS Score
5.5
EPSS Score
0.001
Published
2025-04-16
In the Linux kernel, the following vulnerability has been resolved: ibmvnic: Use kernel helpers for hex dumps Previously, when the driver was printing hex dumps, the buffer was cast to an 8 byte long and printed using string formatters. If the buffer size was not a multiple of 8 then a read buffer overflow was possible. Therefore, create a new ibmvnic function that loops over a buffer and calls hex_dump_to_buffer instead. This patch address KASAN reports like the one below: ibmvnic 30000003 env3: Login Buffer: ibmvnic 30000003 env3: 01000000af000000 <...> ibmvnic 30000003 env3: 2e6d62692e736261 ibmvnic 30000003 env3: 65050003006d6f63 ================================================================== BUG: KASAN: slab-out-of-bounds in ibmvnic_login+0xacc/0xffc [ibmvnic] Read of size 8 at addr c0000001331a9aa8 by task ip/17681 <...> Allocated by task 17681: <...> ibmvnic_login+0x2f0/0xffc [ibmvnic] ibmvnic_open+0x148/0x308 [ibmvnic] __dev_open+0x1ac/0x304 <...> The buggy address is located 168 bytes inside of allocated 175-byte region [c0000001331a9a00, c0000001331a9aaf) <...> ================================================================= ibmvnic 30000003 env3: 000000000033766e
CVSS Score
7.1
EPSS Score
0.001
Published
2025-04-16
In the Linux kernel, the following vulnerability has been resolved: x86/mm/pat: Fix VM_PAT handling when fork() fails in copy_page_range() If track_pfn_copy() fails, we already added the dst VMA to the maple tree. As fork() fails, we'll cleanup the maple tree, and stumble over the dst VMA for which we neither performed any reservation nor copied any page tables. Consequently untrack_pfn() will see VM_PAT and try obtaining the PAT information from the page table -- which fails because the page table was not copied. The easiest fix would be to simply clear the VM_PAT flag of the dst VMA if track_pfn_copy() fails. However, the whole thing is about "simply" clearing the VM_PAT flag is shaky as well: if we passed track_pfn_copy() and performed a reservation, but copying the page tables fails, we'll simply clear the VM_PAT flag, not properly undoing the reservation ... which is also wrong. So let's fix it properly: set the VM_PAT flag only if the reservation succeeded (leaving it clear initially), and undo the reservation if anything goes wrong while copying the page tables: clearing the VM_PAT flag after undoing the reservation. Note that any copied page table entries will get zapped when the VMA will get removed later, after copy_page_range() succeeded; as VM_PAT is not set then, we won't try cleaning VM_PAT up once more and untrack_pfn() will be happy. Note that leaving these page tables in place without a reservation is not a problem, as we are aborting fork(); this process will never run. A reproducer can trigger this usually at the first try: https://gitlab.com/davidhildenbrand/scratchspace/-/raw/main/reproducers/pat_fork.c WARNING: CPU: 26 PID: 11650 at arch/x86/mm/pat/memtype.c:983 get_pat_info+0xf6/0x110 Modules linked in: ... CPU: 26 UID: 0 PID: 11650 Comm: repro3 Not tainted 6.12.0-rc5+ #92 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:get_pat_info+0xf6/0x110 ... Call Trace: <TASK> ... untrack_pfn+0x52/0x110 unmap_single_vma+0xa6/0xe0 unmap_vmas+0x105/0x1f0 exit_mmap+0xf6/0x460 __mmput+0x4b/0x120 copy_process+0x1bf6/0x2aa0 kernel_clone+0xab/0x440 __do_sys_clone+0x66/0x90 do_syscall_64+0x95/0x180 Likely this case was missed in: d155df53f310 ("x86/mm/pat: clear VM_PAT if copy_p4d_range failed") ... and instead of undoing the reservation we simply cleared the VM_PAT flag. Keep the documentation of these functions in include/linux/pgtable.h, one place is more than sufficient -- we should clean that up for the other functions like track_pfn_remap/untrack_pfn separately.
CVSS Score
5.5
EPSS Score
0.001
Published
2025-04-16
In the Linux kernel, the following vulnerability has been resolved: ocfs2: validate l_tree_depth to avoid out-of-bounds access The l_tree_depth field is 16-bit (__le16), but the actual maximum depth is limited to OCFS2_MAX_PATH_DEPTH. Add a check to prevent out-of-bounds access if l_tree_depth has an invalid value, which may occur when reading from a corrupted mounted disk [1].
CVSS Score
7.1
EPSS Score
0.001
Published
2025-04-16


Contact Us

Shodan ® - All rights reserved