In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential hang in nilfs_detach_log_writer()
Syzbot has reported a potential hang in nilfs_detach_log_writer() called
during nilfs2 unmount.
Analysis revealed that this is because nilfs_segctor_sync(), which
synchronizes with the log writer thread, can be called after
nilfs_segctor_destroy() terminates that thread, as shown in the call trace
below:
nilfs_detach_log_writer
nilfs_segctor_destroy
nilfs_segctor_kill_thread --> Shut down log writer thread
flush_work
nilfs_iput_work_func
nilfs_dispose_list
iput
nilfs_evict_inode
nilfs_transaction_commit
nilfs_construct_segment (if inode needs sync)
nilfs_segctor_sync --> Attempt to synchronize with
log writer thread
*** DEADLOCK ***
Fix this issue by changing nilfs_segctor_sync() so that the log writer
thread returns normally without synchronizing after it terminates, and by
forcing tasks that are already waiting to complete once after the thread
terminates.
The skipped inode metadata flushout will then be processed together in the
subsequent cleanup work in nilfs_segctor_destroy().
In the Linux kernel, the following vulnerability has been resolved:
net: bridge: xmit: make sure we have at least eth header len bytes
syzbot triggered an uninit value[1] error in bridge device's xmit path
by sending a short (less than ETH_HLEN bytes) skb. To fix it check if
we can actually pull that amount instead of assuming.
Tested with dropwatch:
drop at: br_dev_xmit+0xb93/0x12d0 [bridge] (0xffffffffc06739b3)
origin: software
timestamp: Mon May 13 11:31:53 2024 778214037 nsec
protocol: 0x88a8
length: 2
original length: 2
drop reason: PKT_TOO_SMALL
[1]
BUG: KMSAN: uninit-value in br_dev_xmit+0x61d/0x1cb0 net/bridge/br_device.c:65
br_dev_xmit+0x61d/0x1cb0 net/bridge/br_device.c:65
__netdev_start_xmit include/linux/netdevice.h:4903 [inline]
netdev_start_xmit include/linux/netdevice.h:4917 [inline]
xmit_one net/core/dev.c:3531 [inline]
dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3547
__dev_queue_xmit+0x34db/0x5350 net/core/dev.c:4341
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
__bpf_tx_skb net/core/filter.c:2136 [inline]
__bpf_redirect_common net/core/filter.c:2180 [inline]
__bpf_redirect+0x14a6/0x1620 net/core/filter.c:2187
____bpf_clone_redirect net/core/filter.c:2460 [inline]
bpf_clone_redirect+0x328/0x470 net/core/filter.c:2432
___bpf_prog_run+0x13fe/0xe0f0 kernel/bpf/core.c:1997
__bpf_prog_run512+0xb5/0xe0 kernel/bpf/core.c:2238
bpf_dispatcher_nop_func include/linux/bpf.h:1234 [inline]
__bpf_prog_run include/linux/filter.h:657 [inline]
bpf_prog_run include/linux/filter.h:664 [inline]
bpf_test_run+0x499/0xc30 net/bpf/test_run.c:425
bpf_prog_test_run_skb+0x14ea/0x1f20 net/bpf/test_run.c:1058
bpf_prog_test_run+0x6b7/0xad0 kernel/bpf/syscall.c:4269
__sys_bpf+0x6aa/0xd90 kernel/bpf/syscall.c:5678
__do_sys_bpf kernel/bpf/syscall.c:5767 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5765 [inline]
__x64_sys_bpf+0xa0/0xe0 kernel/bpf/syscall.c:5765
x64_sys_call+0x96b/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:322
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix division by zero in setup_dsc_config
When slice_height is 0, the division by slice_height in the calculation
of the number of slices will cause a division by zero driver crash. This
leaves the kernel in a state that requires a reboot. This patch adds a
check to avoid the division by zero.
The stack trace below is for the 6.8.4 Kernel. I reproduced the issue on
a Z16 Gen 2 Lenovo Thinkpad with a Apple Studio Display monitor
connected via Thunderbolt. The amdgpu driver crashed with this exception
when I rebooted the system with the monitor connected.
kernel: ? die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434 arch/x86/kernel/dumpstack.c:447)
kernel: ? do_trap (arch/x86/kernel/traps.c:113 arch/x86/kernel/traps.c:154)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? do_error_trap (./arch/x86/include/asm/traps.h:58 arch/x86/kernel/traps.c:175)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? exc_divide_error (arch/x86/kernel/traps.c:194 (discriminator 2))
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? asm_exc_divide_error (./arch/x86/include/asm/idtentry.h:548)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: dc_dsc_compute_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1109) amdgpu
After applying this patch, the driver no longer crashes when the monitor
is connected and the system is rebooted. I believe this is the same
issue reported for 3113.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: guard against invalid STA ID on removal
Guard against invalid station IDs in iwl_mvm_mld_rm_sta_id as that would
result in out-of-bounds array accesses. This prevents issues should the
driver get into a bad state during error handling.
In the Linux kernel, the following vulnerability has been resolved:
fs/9p: fix uninitialized values during inode evict
If an iget fails due to not being able to retrieve information
from the server then the inode structure is only partially
initialized. When the inode gets evicted, references to
uninitialized structures (like fscache cookies) were being
made.
This patch checks for a bad_inode before doing anything other
than clearing the inode from the cache. Since the inode is
bad, it shouldn't have any state associated with it that needs
to be written back (and there really isn't a way to complete
those anyways).
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up()
lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the
hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the
hbalock to avoid potential deadlock.
In the Linux kernel, the following vulnerability has been resolved:
uio_hv_generic: Don't free decrypted memory
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The VMBus device UIO driver could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the gpadl
to decide whether to free the memory.
In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Track decrypted status in vmbus_gpadl
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
In order to make sure callers of vmbus_establish_gpadl() and
vmbus_teardown_gpadl() don't return decrypted/shared pages to
allocators, add a field in struct vmbus_gpadl to keep track of the
decryption status of the buffers. This will allow the callers to
know if they should free or leak the pages.
In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Leak pages if set_memory_encrypted() fails
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
VMBus code could free decrypted pages if set_memory_encrypted()/decrypted()
fails. Leak the pages if this happens.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Atom Integrated System Info v2_2 for DCN35
New request from KMD/VBIOS in order to support new UMA carveout
model. This fixes a null dereference from accessing
Ctx->dc_bios->integrated_info while it was NULL.
DAL parses through the BIOS and extracts the necessary
integrated_info but was missing a case for the new BIOS
version 2.3.