In the Linux kernel, the following vulnerability has been resolved:
gfs2: Fix slab-use-after-free in gfs2_qd_dealloc
In gfs2_put_super(), whether withdrawn or not, the quota should
be cleaned up by gfs2_quota_cleanup().
Otherwise, struct gfs2_sbd will be freed before gfs2_qd_dealloc (rcu
callback) has run for all gfs2_quota_data objects, resulting in
use-after-free.
Also, gfs2_destroy_threads() and gfs2_quota_cleanup() is already called
by gfs2_make_fs_ro(), so in gfs2_put_super(), after calling
gfs2_make_fs_ro(), there is no need to call them again.
In the Linux kernel, the following vulnerability has been resolved:
i3c: mipi-i3c-hci: Fix out of bounds access in hci_dma_irq_handler
Do not loop over ring headers in hci_dma_irq_handler() that are not
allocated and enabled in hci_dma_init(). Otherwise out of bounds access
will occur from rings->headers[i] access when i >= number of allocated
ring headers.
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix use-after-free in rdata->read_into_pages()
When the network status is unstable, use-after-free may occur when
read data from the server.
BUG: KASAN: use-after-free in readpages_fill_pages+0x14c/0x7e0
Call Trace:
<TASK>
dump_stack_lvl+0x38/0x4c
print_report+0x16f/0x4a6
kasan_report+0xb7/0x130
readpages_fill_pages+0x14c/0x7e0
cifs_readv_receive+0x46d/0xa40
cifs_demultiplex_thread+0x121c/0x1490
kthread+0x16b/0x1a0
ret_from_fork+0x2c/0x50
</TASK>
Allocated by task 2535:
kasan_save_stack+0x22/0x50
kasan_set_track+0x25/0x30
__kasan_kmalloc+0x82/0x90
cifs_readdata_direct_alloc+0x2c/0x110
cifs_readdata_alloc+0x2d/0x60
cifs_readahead+0x393/0xfe0
read_pages+0x12f/0x470
page_cache_ra_unbounded+0x1b1/0x240
filemap_get_pages+0x1c8/0x9a0
filemap_read+0x1c0/0x540
cifs_strict_readv+0x21b/0x240
vfs_read+0x395/0x4b0
ksys_read+0xb8/0x150
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
Freed by task 79:
kasan_save_stack+0x22/0x50
kasan_set_track+0x25/0x30
kasan_save_free_info+0x2e/0x50
__kasan_slab_free+0x10e/0x1a0
__kmem_cache_free+0x7a/0x1a0
cifs_readdata_release+0x49/0x60
process_one_work+0x46c/0x760
worker_thread+0x2a4/0x6f0
kthread+0x16b/0x1a0
ret_from_fork+0x2c/0x50
Last potentially related work creation:
kasan_save_stack+0x22/0x50
__kasan_record_aux_stack+0x95/0xb0
insert_work+0x2b/0x130
__queue_work+0x1fe/0x660
queue_work_on+0x4b/0x60
smb2_readv_callback+0x396/0x800
cifs_abort_connection+0x474/0x6a0
cifs_reconnect+0x5cb/0xa50
cifs_readv_from_socket.cold+0x22/0x6c
cifs_read_page_from_socket+0xc1/0x100
readpages_fill_pages.cold+0x2f/0x46
cifs_readv_receive+0x46d/0xa40
cifs_demultiplex_thread+0x121c/0x1490
kthread+0x16b/0x1a0
ret_from_fork+0x2c/0x50
The following function calls will cause UAF of the rdata pointer.
readpages_fill_pages
cifs_read_page_from_socket
cifs_readv_from_socket
cifs_reconnect
__cifs_reconnect
cifs_abort_connection
mid->callback() --> smb2_readv_callback
queue_work(&rdata->work) # if the worker completes first,
# the rdata is freed
cifs_readv_complete
kref_put
cifs_readdata_release
kfree(rdata)
return rdata->... # UAF in readpages_fill_pages()
Similarly, this problem also occurs in the uncache_fill_pages().
Fix this by adjusts the order of condition judgment in the return
statement.
In the Linux kernel, the following vulnerability has been resolved:
spi: Fix null dereference on suspend
A race condition exists where a synchronous (noqueue) transfer can be
active during a system suspend. This can cause a null pointer
dereference exception to occur when the system resumes.
Example order of events leading to the exception:
1. spi_sync() calls __spi_transfer_message_noqueue() which sets
ctlr->cur_msg
2. Spi transfer begins via spi_transfer_one_message()
3. System is suspended interrupting the transfer context
4. System is resumed
6. spi_controller_resume() calls spi_start_queue() which resets cur_msg
to NULL
7. Spi transfer context resumes and spi_finalize_current_message() is
called which dereferences cur_msg (which is now NULL)
Wait for synchronous transfers to complete before suspending by
acquiring the bus mutex and setting/checking a suspend flag.
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix use-after-free in smb2_query_info_compound()
The following UAF was triggered when running fstests generic/072 with
KASAN enabled against Windows Server 2022 and mount options
'multichannel,max_channels=2,vers=3.1.1,mfsymlinks,noperm'
BUG: KASAN: slab-use-after-free in smb2_query_info_compound+0x423/0x6d0 [cifs]
Read of size 8 at addr ffff888014941048 by task xfs_io/27534
CPU: 0 PID: 27534 Comm: xfs_io Not tainted 6.6.0-rc7 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
Call Trace:
dump_stack_lvl+0x4a/0x80
print_report+0xcf/0x650
? srso_alias_return_thunk+0x5/0x7f
? srso_alias_return_thunk+0x5/0x7f
? __phys_addr+0x46/0x90
kasan_report+0xda/0x110
? smb2_query_info_compound+0x423/0x6d0 [cifs]
? smb2_query_info_compound+0x423/0x6d0 [cifs]
smb2_query_info_compound+0x423/0x6d0 [cifs]
? __pfx_smb2_query_info_compound+0x10/0x10 [cifs]
? srso_alias_return_thunk+0x5/0x7f
? __stack_depot_save+0x39/0x480
? kasan_save_stack+0x33/0x60
? kasan_set_track+0x25/0x30
? ____kasan_slab_free+0x126/0x170
smb2_queryfs+0xc2/0x2c0 [cifs]
? __pfx_smb2_queryfs+0x10/0x10 [cifs]
? __pfx___lock_acquire+0x10/0x10
smb311_queryfs+0x210/0x220 [cifs]
? __pfx_smb311_queryfs+0x10/0x10 [cifs]
? srso_alias_return_thunk+0x5/0x7f
? __lock_acquire+0x480/0x26c0
? lock_release+0x1ed/0x640
? srso_alias_return_thunk+0x5/0x7f
? do_raw_spin_unlock+0x9b/0x100
cifs_statfs+0x18c/0x4b0 [cifs]
statfs_by_dentry+0x9b/0xf0
fd_statfs+0x4e/0xb0
__do_sys_fstatfs+0x7f/0xe0
? __pfx___do_sys_fstatfs+0x10/0x10
? srso_alias_return_thunk+0x5/0x7f
? lockdep_hardirqs_on_prepare+0x136/0x200
? srso_alias_return_thunk+0x5/0x7f
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Allocated by task 27534:
kasan_save_stack+0x33/0x60
kasan_set_track+0x25/0x30
__kasan_kmalloc+0x8f/0xa0
open_cached_dir+0x71b/0x1240 [cifs]
smb2_query_info_compound+0x5c3/0x6d0 [cifs]
smb2_queryfs+0xc2/0x2c0 [cifs]
smb311_queryfs+0x210/0x220 [cifs]
cifs_statfs+0x18c/0x4b0 [cifs]
statfs_by_dentry+0x9b/0xf0
fd_statfs+0x4e/0xb0
__do_sys_fstatfs+0x7f/0xe0
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Freed by task 27534:
kasan_save_stack+0x33/0x60
kasan_set_track+0x25/0x30
kasan_save_free_info+0x2b/0x50
____kasan_slab_free+0x126/0x170
slab_free_freelist_hook+0xd0/0x1e0
__kmem_cache_free+0x9d/0x1b0
open_cached_dir+0xff5/0x1240 [cifs]
smb2_query_info_compound+0x5c3/0x6d0 [cifs]
smb2_queryfs+0xc2/0x2c0 [cifs]
This is a race between open_cached_dir() and cached_dir_lease_break()
where the cache entry for the open directory handle receives a lease
break while creating it. And before returning from open_cached_dir(),
we put the last reference of the new @cfid because of
!@cfid->has_lease.
Besides the UAF, while running xfstests a lot of missed lease breaks
have been noticed in tests that run several concurrent statfs(2) calls
on those cached fids
CIFS: VFS: \\w22-root1.gandalf.test No task to wake, unknown frame...
CIFS: VFS: \\w22-root1.gandalf.test Cmd: 18 Err: 0x0 Flags: 0x1...
CIFS: VFS: \\w22-root1.gandalf.test smb buf 00000000715bfe83 len 108
CIFS: VFS: Dump pending requests:
CIFS: VFS: \\w22-root1.gandalf.test No task to wake, unknown frame...
CIFS: VFS: \\w22-root1.gandalf.test Cmd: 18 Err: 0x0 Flags: 0x1...
CIFS: VFS: \\w22-root1.gandalf.test smb buf 000000005aa7316e len 108
...
To fix both, in open_cached_dir() ensure that @cfid->has_lease is set
right before sending out compounded request so that any potential
lease break will be get processed by demultiplex thread while we're
still caching @cfid. And, if open failed for some reason, re-check
@cfid->has_lease to decide whether or not put lease reference.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Avoid NULL dereference of timing generator
[Why & How]
Check whether assigned timing generator is NULL or not before
accessing its funcs to prevent NULL dereference.
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Don't let sock_map_{close,destroy,unhash} call itself
sock_map proto callbacks should never call themselves by design. Protect
against bugs like [1] and break out of the recursive loop to avoid a stack
overflow in favor of a resource leak.
[1] https://lore.kernel.org/all/00000000000073b14905ef2e7401@google.com/
In the Linux kernel, the following vulnerability has been resolved:
btrfs: lock the inode in shared mode before starting fiemap
Currently fiemap does not take the inode's lock (VFS lock), it only locks
a file range in the inode's io tree. This however can lead to a deadlock
if we have a concurrent fsync on the file and fiemap code triggers a fault
when accessing the user space buffer with fiemap_fill_next_extent(). The
deadlock happens on the inode's i_mmap_lock semaphore, which is taken both
by fsync and btrfs_page_mkwrite(). This deadlock was recently reported by
syzbot and triggers a trace like the following:
task:syz-executor361 state:D stack:20264 pid:5668 ppid:5119 flags:0x00004004
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5293 [inline]
__schedule+0x995/0xe20 kernel/sched/core.c:6606
schedule+0xcb/0x190 kernel/sched/core.c:6682
wait_on_state fs/btrfs/extent-io-tree.c:707 [inline]
wait_extent_bit+0x577/0x6f0 fs/btrfs/extent-io-tree.c:751
lock_extent+0x1c2/0x280 fs/btrfs/extent-io-tree.c:1742
find_lock_delalloc_range+0x4e6/0x9c0 fs/btrfs/extent_io.c:488
writepage_delalloc+0x1ef/0x540 fs/btrfs/extent_io.c:1863
__extent_writepage+0x736/0x14e0 fs/btrfs/extent_io.c:2174
extent_write_cache_pages+0x983/0x1220 fs/btrfs/extent_io.c:3091
extent_writepages+0x219/0x540 fs/btrfs/extent_io.c:3211
do_writepages+0x3c3/0x680 mm/page-writeback.c:2581
filemap_fdatawrite_wbc+0x11e/0x170 mm/filemap.c:388
__filemap_fdatawrite_range mm/filemap.c:421 [inline]
filemap_fdatawrite_range+0x175/0x200 mm/filemap.c:439
btrfs_fdatawrite_range fs/btrfs/file.c:3850 [inline]
start_ordered_ops fs/btrfs/file.c:1737 [inline]
btrfs_sync_file+0x4ff/0x1190 fs/btrfs/file.c:1839
generic_write_sync include/linux/fs.h:2885 [inline]
btrfs_do_write_iter+0xcd3/0x1280 fs/btrfs/file.c:1684
call_write_iter include/linux/fs.h:2189 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x7dc/0xc50 fs/read_write.c:584
ksys_write+0x177/0x2a0 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f7d4054e9b9
RSP: 002b:00007f7d404fa2f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00007f7d405d87a0 RCX: 00007f7d4054e9b9
RDX: 0000000000000090 RSI: 0000000020000000 RDI: 0000000000000006
RBP: 00007f7d405a51d0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 61635f65646f6e69
R13: 65646f7475616f6e R14: 7261637369646f6e R15: 00007f7d405d87a8
</TASK>
INFO: task syz-executor361:5697 blocked for more than 145 seconds.
Not tainted 6.2.0-rc3-syzkaller-00376-g7c6984405241 #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor361 state:D stack:21216 pid:5697 ppid:5119 flags:0x00004004
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5293 [inline]
__schedule+0x995/0xe20 kernel/sched/core.c:6606
schedule+0xcb/0x190 kernel/sched/core.c:6682
rwsem_down_read_slowpath+0x5f9/0x930 kernel/locking/rwsem.c:1095
__down_read_common+0x54/0x2a0 kernel/locking/rwsem.c:1260
btrfs_page_mkwrite+0x417/0xc80 fs/btrfs/inode.c:8526
do_page_mkwrite+0x19e/0x5e0 mm/memory.c:2947
wp_page_shared+0x15e/0x380 mm/memory.c:3295
handle_pte_fault mm/memory.c:4949 [inline]
__handle_mm_fault mm/memory.c:5073 [inline]
handle_mm_fault+0x1b79/0x26b0 mm/memory.c:5219
do_user_addr_fault+0x69b/0xcb0 arch/x86/mm/fault.c:1428
handle_page_fault arch/x86/mm/fault.c:1519 [inline]
exc_page_fault+0x7a/0x110 arch/x86/mm/fault.c:1575
asm_exc_page_fault+0x22/0x30 arch/x86/include/asm/idtentry.h:570
RIP: 0010:copy_user_short_string+0xd/0x40 arch/x86/lib/copy_user_64.S:233
Code: 74 0a 89 (...)
RSP: 0018:ffffc9000570f330 EFLAGS: 000502
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
lib/generic-radix-tree.c: Don't overflow in peek()
When we started spreading new inode numbers throughout most of the 64
bit inode space, that triggered some corner case bugs, in particular
some integer overflows related to the radix tree code. Oops.