In the Linux kernel, the following vulnerability has been resolved:
HID: cp2112: prevent a buffer overflow in cp2112_xfer()
Smatch warnings:
drivers/hid/hid-cp2112.c:793 cp2112_xfer() error: __memcpy()
'data->block[1]' too small (33 vs 255)
drivers/hid/hid-cp2112.c:793 cp2112_xfer() error: __memcpy() 'buf' too
small (64 vs 255)
The 'read_length' variable is provided by 'data->block[0]' which comes
from user and it(read_length) can take a value between 0-255. Add an
upper bound to 'read_length' variable to prevent a buffer overflow in
memcpy().
In the Linux kernel, the following vulnerability has been resolved:
mmc: sdhci-of-esdhc: Fix refcount leak in esdhc_signal_voltage_switch
of_find_matching_node() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
of_node_put() checks null pointer.
In the Linux kernel, the following vulnerability has been resolved:
soundwire: revisit driver bind/unbind and callbacks
In the SoundWire probe, we store a pointer from the driver ops into
the 'slave' structure. This can lead to kernel oopses when unbinding
codec drivers, e.g. with the following sequence to remove machine
driver and codec driver.
/sbin/modprobe -r snd_soc_sof_sdw
/sbin/modprobe -r snd_soc_rt711
The full details can be found in the BugLink below, for reference the
two following examples show different cases of driver ops/callbacks
being invoked after the driver .remove().
kernel: BUG: kernel NULL pointer dereference, address: 0000000000000150
kernel: Workqueue: events cdns_update_slave_status_work [soundwire_cadence]
kernel: RIP: 0010:mutex_lock+0x19/0x30
kernel: Call Trace:
kernel: ? sdw_handle_slave_status+0x426/0xe00 [soundwire_bus 94ff184bf398570c3f8ff7efe9e32529f532e4ae]
kernel: ? newidle_balance+0x26a/0x400
kernel: ? cdns_update_slave_status_work+0x1e9/0x200 [soundwire_cadence 1bcf98eebe5ba9833cd433323769ac923c9c6f82]
kernel: BUG: unable to handle page fault for address: ffffffffc07654c8
kernel: Workqueue: pm pm_runtime_work
kernel: RIP: 0010:sdw_bus_prep_clk_stop+0x6f/0x160 [soundwire_bus]
kernel: Call Trace:
kernel: <TASK>
kernel: sdw_cdns_clock_stop+0xb5/0x1b0 [soundwire_cadence 1bcf98eebe5ba9833cd433323769ac923c9c6f82]
kernel: intel_suspend_runtime+0x5f/0x120 [soundwire_intel aca858f7c87048d3152a4a41bb68abb9b663a1dd]
kernel: ? dpm_sysfs_remove+0x60/0x60
This was not detected earlier in Intel tests since the tests first
remove the parent PCI device and shut down the bus. The sequence
above is a corner case which keeps the bus operational but without a
driver bound.
While trying to solve this kernel oopses, it became clear that the
existing SoundWire bus does not deal well with the unbind case.
Commit 528be501b7d4a ("soundwire: sdw_slave: add probe_complete structure and new fields")
added a 'probed' status variable and a 'probe_complete'
struct completion. This status is however not reset on remove and
likewise the 'probe complete' is not re-initialized, so the
bind/unbind/bind test cases would fail. The timeout used before the
'update_status' callback was also a bad idea in hindsight, there
should really be no timing assumption as to if and when a driver is
bound to a device.
An initial draft was based on device_lock() and device_unlock() was
tested. This proved too complicated, with deadlocks created during the
suspend-resume sequences, which also use the same device_lock/unlock()
as the bind/unbind sequences. On a CometLake device, a bad DSDT/BIOS
caused spurious resumes and the use of device_lock() caused hangs
during suspend. After multiple weeks or testing and painful
reverse-engineering of deadlocks on different devices, we looked for
alternatives that did not interfere with the device core.
A bus notifier was used successfully to keep track of DRIVER_BOUND and
DRIVER_UNBIND events. This solved the bind-unbind-bind case in tests,
but it can still be defeated with a theoretical corner case where the
memory is freed by a .remove while the callback is in use. The
notifier only helps make sure the driver callbacks are valid, but not
that the memory allocated in probe remains valid while the callbacks
are invoked.
This patch suggests the introduction of a new 'sdw_dev_lock' mutex
protecting probe/remove and all driver callbacks. Since this mutex is
'local' to SoundWire only, it does not interfere with existing locks
and does not create deadlocks. In addition, this patch removes the
'probe_complete' completion, instead we directly invoke the
'update_status' from the probe routine. That removes any sort of
timing dependency and a much better support for the device/driver
model, the driver could be bound before the bus started, or eons after
the bus started and the hardware would be properly initialized in all
cases.
BugLink: https://github.com/thesofproject/linux/is
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
PCI: dwc: Deallocate EPC memory on dw_pcie_ep_init() errors
If dw_pcie_ep_init() fails to perform any action after the EPC memory is
initialized and the MSI memory region is allocated, the latter parts won't
be undone thus causing a memory leak. Add a cleanup-on-error path to fix
these leaks.
[bhelgaas: commit log]
In the Linux kernel, the following vulnerability has been resolved:
RDMA/hfi1: fix potential memory leak in setup_base_ctxt()
setup_base_ctxt() allocates a memory chunk for uctxt->groups with
hfi1_alloc_ctxt_rcv_groups(). When init_user_ctxt() fails, uctxt->groups
is not released, which will lead to a memory leak.
We should release the uctxt->groups with hfi1_free_ctxt_rcv_groups()
when init_user_ctxt() fails.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/qedr: Fix potential memory leak in __qedr_alloc_mr()
__qedr_alloc_mr() allocates a memory chunk for "mr->info.pbl_table" with
init_mr_info(). When rdma_alloc_tid() and rdma_register_tid() fail, "mr"
is released while "mr->info.pbl_table" is not released, which will lead
to a memory leak.
We should release the "mr->info.pbl_table" with qedr_free_pbl() when error
occurs to fix the memory leak.
In the Linux kernel, the following vulnerability has been resolved:
memstick/ms_block: Fix a memory leak
'erased_blocks_bitmap' is never freed. As it is allocated at the same time
as 'used_blocks_bitmap', it is likely that it should be freed also at the
same time.
Add the corresponding bitmap_free() in msb_data_clear().
In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8173: Fix refcount leak in mt8173_rt5650_rt5676_dev_probe
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Fix missing of_node_put() in error paths.
In the Linux kernel, the following vulnerability has been resolved:
jbd2: fix assertion 'jh->b_frozen_data == NULL' failure when journal aborted
Following process will fail assertion 'jh->b_frozen_data == NULL' in
jbd2_journal_dirty_metadata():
jbd2_journal_commit_transaction
unlink(dir/a)
jh->b_transaction = trans1
jh->b_jlist = BJ_Metadata
journal->j_running_transaction = NULL
trans1->t_state = T_COMMIT
unlink(dir/b)
handle->h_trans = trans2
do_get_write_access
jh->b_modified = 0
jh->b_frozen_data = frozen_buffer
jh->b_next_transaction = trans2
jbd2_journal_dirty_metadata
is_handle_aborted
is_journal_aborted // return false
--> jbd2 abort <--
while (commit_transaction->t_buffers)
if (is_journal_aborted)
jbd2_journal_refile_buffer
__jbd2_journal_refile_buffer
WRITE_ONCE(jh->b_transaction,
jh->b_next_transaction)
WRITE_ONCE(jh->b_next_transaction, NULL)
__jbd2_journal_file_buffer(jh, BJ_Reserved)
J_ASSERT_JH(jh, jh->b_frozen_data == NULL) // assertion failure !
The reproducer (See detail in [Link]) reports:
------------[ cut here ]------------
kernel BUG at fs/jbd2/transaction.c:1629!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 2 PID: 584 Comm: unlink Tainted: G W
5.19.0-rc6-00115-g4a57a8400075-dirty #697
RIP: 0010:jbd2_journal_dirty_metadata+0x3c5/0x470
RSP: 0018:ffffc90000be7ce0 EFLAGS: 00010202
Call Trace:
<TASK>
__ext4_handle_dirty_metadata+0xa0/0x290
ext4_handle_dirty_dirblock+0x10c/0x1d0
ext4_delete_entry+0x104/0x200
__ext4_unlink+0x22b/0x360
ext4_unlink+0x275/0x390
vfs_unlink+0x20b/0x4c0
do_unlinkat+0x42f/0x4c0
__x64_sys_unlink+0x37/0x50
do_syscall_64+0x35/0x80
After journal aborting, __jbd2_journal_refile_buffer() is executed with
holding @jh->b_state_lock, we can fix it by moving 'is_handle_aborted()'
into the area protected by @jh->b_state_lock.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix error unwind in rxe_create_qp()
In the function rxe_create_qp(), rxe_qp_from_init() is called to
initialize qp, internally things like the spin locks are not setup until
rxe_qp_init_req().
If an error occures before this point then the unwind will call
rxe_cleanup() and eventually to rxe_qp_do_cleanup()/rxe_cleanup_task()
which will oops when trying to access the uninitialized spinlock.
Move the spinlock initializations earlier before any failures.