Heap-based buffer overflow in dnsmasq before 2.78 allows remote attackers to cause a denial of service (crash) or execute arbitrary code via a crafted DNS response.
Heap-based buffer overflow in dnsmasq before 2.78 allows remote attackers to cause a denial of service (crash) or execute arbitrary code via a crafted IPv6 router advertisement request.
Stack-based buffer overflow in dnsmasq before 2.78 allows remote attackers to cause a denial of service (crash) or execute arbitrary code via a crafted DHCPv6 request.
dnsmasq before 2.78, when configured as a relay, allows remote attackers to obtain sensitive memory information via vectors involving handling DHCPv6 forwarded requests.
Memory leak in dnsmasq before 2.78, when the --add-mac, --add-cpe-id or --add-subnet option is specified, allows remote attackers to cause a denial of service (memory consumption) via vectors involving DNS response creation.
Integer underflow in the add_pseudoheader function in dnsmasq before 2.78 , when the --add-mac, --add-cpe-id or --add-subnet option is specified, allows remote attackers to cause a denial of service via a crafted DNS request.
In dnsmasq before 2.78, if the DNS packet size does not match the expected size, the size parameter in a memset call gets a negative value. As it is an unsigned value, memset ends up writing up to 0xffffffff zero's (0xffffffffffffffff in 64 bit platforms), making dnsmasq crash.
The Linux kernel, as used in Red Hat Enterprise Linux 7, kernel-rt, and Enterprise MRG 2 and when booted with UEFI Secure Boot enabled, allows local users to bypass intended securelevel/secureboot restrictions by leveraging improper handling of secure_boot flag across kexec reboot.
When running Apache Tomcat 7.0.0 to 7.0.79 on Windows with HTTP PUTs enabled (e.g. via setting the readonly initialisation parameter of the Default to false) it was possible to upload a JSP file to the server via a specially crafted request. This JSP could then be requested and any code it contained would be executed by the server.
The native Bluetooth stack in the Linux Kernel (BlueZ), starting at the Linux kernel version 2.6.32 and up to and including 4.13.1, are vulnerable to a stack overflow vulnerability in the processing of L2CAP configuration responses resulting in Remote code execution in kernel space.