In the Linux kernel, the following vulnerability has been resolved:
jfs: add check read-only before txBeginAnon() call
Added a read-only check before calling `txBeginAnon` in `extAlloc`
and `extRecord`. This prevents modification attempts on a read-only
mounted filesystem, avoiding potential errors or crashes.
Call trace:
txBeginAnon+0xac/0x154
extAlloc+0xe8/0xdec fs/jfs/jfs_extent.c:78
jfs_get_block+0x340/0xb98 fs/jfs/inode.c:248
__block_write_begin_int+0x580/0x166c fs/buffer.c:2128
__block_write_begin fs/buffer.c:2177 [inline]
block_write_begin+0x98/0x11c fs/buffer.c:2236
jfs_write_begin+0x44/0x88 fs/jfs/inode.c:299
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: add srng->lock for ath11k_hal_srng_* in monitor mode
ath11k_hal_srng_* should be used with srng->lock to protect srng data.
For ath11k_dp_rx_mon_dest_process() and ath11k_dp_full_mon_process_rx(),
they use ath11k_hal_srng_* for many times but never call srng->lock.
So when running (full) monitor mode, warning will occur:
RIP: 0010:ath11k_hal_srng_dst_peek+0x18/0x30 [ath11k]
Call Trace:
? ath11k_hal_srng_dst_peek+0x18/0x30 [ath11k]
ath11k_dp_rx_process_mon_status+0xc45/0x1190 [ath11k]
? idr_alloc_u32+0x97/0xd0
ath11k_dp_rx_process_mon_rings+0x32a/0x550 [ath11k]
ath11k_dp_service_srng+0x289/0x5a0 [ath11k]
ath11k_pcic_ext_grp_napi_poll+0x30/0xd0 [ath11k]
__napi_poll+0x30/0x1f0
net_rx_action+0x198/0x320
__do_softirq+0xdd/0x319
So add srng->lock for them to avoid such warnings.
Inorder to fetch the srng->lock, should change srng's definition from
'void' to 'struct hal_srng'. And initialize them elsewhere to prevent
one line of code from being too long. This is consistent with other ring
process functions, such as ath11k_dp_process_rx().
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30
Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix RCU stall while reaping monitor destination ring
While processing the monitor destination ring, MSDUs are reaped from the
link descriptor based on the corresponding buf_id.
However, sometimes the driver cannot obtain a valid buffer corresponding
to the buf_id received from the hardware. This causes an infinite loop
in the destination processing, resulting in a kernel crash.
kernel log:
ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309
ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed
ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309
ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed
Fix this by skipping the problematic buf_id and reaping the next entry,
replacing the break with the next MSDU processing.
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30
Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1
In the Linux kernel, the following vulnerability has been resolved:
ntb_hw_switchtec: Fix shift-out-of-bounds in switchtec_ntb_mw_set_trans
There is a kernel API ntb_mw_clear_trans() would pass 0 to both addr and
size. This would make xlate_pos negative.
[ 23.734156] switchtec switchtec0: MW 0: part 0 addr 0x0000000000000000 size 0x0000000000000000
[ 23.734158] ================================================================================
[ 23.734172] UBSAN: shift-out-of-bounds in drivers/ntb/hw/mscc/ntb_hw_switchtec.c:293:7
[ 23.734418] shift exponent -1 is negative
Ensuring xlate_pos is a positive or zero before BIT.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: socket: Lookup orig tuple for IPv6 SNAT
nf_sk_lookup_slow_v4 does the conntrack lookup for IPv4 packets to
restore the original 5-tuple in case of SNAT, to be able to find the
right socket (if any). Then socket_match() can correctly check whether
the socket was transparent.
However, the IPv6 counterpart (nf_sk_lookup_slow_v6) lacks this
conntrack lookup, making xt_socket fail to match on the socket when the
packet was SNATed. Add the same logic to nf_sk_lookup_slow_v6.
IPv6 SNAT is used in Kubernetes clusters for pod-to-world packets, as
pods' addresses are in the fd00::/8 ULA subnet and need to be replaced
with the node's external address. Cilium leverages Envoy to enforce L7
policies, and Envoy uses transparent sockets. Cilium inserts an iptables
prerouting rule that matches on `-m socket --transparent` and redirects
the packets to localhost, but it fails to match SNATed IPv6 packets due
to that missing conntrack lookup.
In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Apply the link chain quirk on NEC isoc endpoints
Two clearly different specimens of NEC uPD720200 (one with start/stop
bug, one without) were seen to cause IOMMU faults after some Missed
Service Errors. Faulting address is immediately after a transfer ring
segment and patched dynamic debug messages revealed that the MSE was
received when waiting for a TD near the end of that segment:
[ 1.041954] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ffa08fe0
[ 1.042120] xhci_hcd: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x0005 address=0xffa09000 flags=0x0000]
[ 1.042146] xhci_hcd: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x0005 address=0xffa09040 flags=0x0000]
It gets even funnier if the next page is a ring segment accessible to
the HC. Below, it reports MSE in segment at ff1e8000, plows through a
zero-filled page at ff1e9000 and starts reporting events for TRBs in
page at ff1ea000 every microframe, instead of jumping to seg ff1e6000.
[ 7.041671] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ff1e8fe0
[ 7.041999] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ff1e8fe0
[ 7.042011] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint
[ 7.042028] xhci_hcd: All TDs skipped for slot 1 ep 2. Clear skip flag.
[ 7.042134] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint
[ 7.042138] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 31
[ 7.042144] xhci_hcd: Looking for event-dma 00000000ff1ea040 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
[ 7.042259] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint
[ 7.042262] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 31
[ 7.042266] xhci_hcd: Looking for event-dma 00000000ff1ea050 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
At some point completion events change from Isoch Buffer Overrun to
Short Packet and the HC finally finds cycle bit mismatch in ff1ec000.
[ 7.098130] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 13
[ 7.098132] xhci_hcd: Looking for event-dma 00000000ff1ecc50 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
[ 7.098254] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 13
[ 7.098256] xhci_hcd: Looking for event-dma 00000000ff1ecc60 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
[ 7.098379] xhci_hcd: Overrun event on slot 1 ep 2
It's possible that data from the isochronous device were written to
random buffers of pending TDs on other endpoints (either IN or OUT),
other devices or even other HCs in the same IOMMU domain.
Lastly, an error from a different USB device on another HC. Was it
caused by the above? I don't know, but it may have been. The disk
was working without any other issues and generated PCIe traffic to
starve the NEC of upstream BW and trigger those MSEs. The two HCs
shared one x1 slot by means of a commercial "PCIe splitter" board.
[ 7.162604] usb 10-2: reset SuperSpeed USB device number 3 using xhci_hcd
[ 7.178990] sd 9:0:0:0: [sdb] tag#0 UNKNOWN(0x2003) Result: hostbyte=0x07 driverbyte=DRIVER_OK cmd_age=0s
[ 7.179001] sd 9:0:0:0: [sdb] tag#0 CDB: opcode=0x28 28 00 04 02 ae 00 00 02 00 00
[ 7.179004] I/O error, dev sdb, sector 67284480 op 0x0:(READ) flags 0x80700 phys_seg 5 prio class 0
Fortunately, it appears that this ridiculous bug is avoided by setting
the chain bit of Link TRBs on isochronous rings. Other ancient HCs are
known which also expect the bit to be set and they ignore Link TRBs if
it's not. Reportedly, 0.95 spec guaranteed that the bit is set.
The bandwidth-starved NEC HC running a 32KB/uframe UVC endpoint reports
tens of MSEs per second and runs into the bug within seconds. Chaining
Link TRBs allows the same workload to run for many minutes, many times.
No ne
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
mm/migrate: fix shmem xarray update during migration
A shmem folio can be either in page cache or in swap cache, but not at the
same time. Namely, once it is in swap cache, folio->mapping should be
NULL, and the folio is no longer in a shmem mapping.
In __folio_migrate_mapping(), to determine the number of xarray entries to
update, folio_test_swapbacked() is used, but that conflates shmem in page
cache case and shmem in swap cache case. It leads to xarray multi-index
entry corruption, since it turns a sibling entry to a normal entry during
xas_store() (see [1] for a userspace reproduction). Fix it by only using
folio_test_swapcache() to determine whether xarray is storing swap cache
entries or not to choose the right number of xarray entries to update.
[1] https://lore.kernel.org/linux-mm/Z8idPCkaJW1IChjT@casper.infradead.org/
Note:
In __split_huge_page(), folio_test_anon() && folio_test_swapcache() is
used to get swap_cache address space, but that ignores the shmem folio in
swap cache case. It could lead to NULL pointer dereferencing when a
in-swap-cache shmem folio is split at __xa_store(), since
!folio_test_anon() is true and folio->mapping is NULL. But fortunately,
its caller split_huge_page_to_list_to_order() bails out early with EBUSY
when folio->mapping is NULL. So no need to take care of it here.
In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Unconditionally save+flush host FPSIMD/SVE/SME state
There are several problems with the way hyp code lazily saves the host's
FPSIMD/SVE state, including:
* Host SVE being discarded unexpectedly due to inconsistent
configuration of TIF_SVE and CPACR_ELx.ZEN. This has been seen to
result in QEMU crashes where SVE is used by memmove(), as reported by
Eric Auger:
https://issues.redhat.com/browse/RHEL-68997
* Host SVE state is discarded *after* modification by ptrace, which was an
unintentional ptrace ABI change introduced with lazy discarding of SVE state.
* The host FPMR value can be discarded when running a non-protected VM,
where FPMR support is not exposed to a VM, and that VM uses
FPSIMD/SVE. In these cases the hyp code does not save the host's FPMR
before unbinding the host's FPSIMD/SVE/SME state, leaving a stale
value in memory.
Avoid these by eagerly saving and "flushing" the host's FPSIMD/SVE/SME
state when loading a vCPU such that KVM does not need to save any of the
host's FPSIMD/SVE/SME state. For clarity, fpsimd_kvm_prepare() is
removed and the necessary call to fpsimd_save_and_flush_cpu_state() is
placed in kvm_arch_vcpu_load_fp(). As 'fpsimd_state' and 'fpmr_ptr'
should not be used, they are set to NULL; all uses of these will be
removed in subsequent patches.
Historical problems go back at least as far as v5.17, e.g. erroneous
assumptions about TIF_SVE being clear in commit:
8383741ab2e773a9 ("KVM: arm64: Get rid of host SVE tracking/saving")
... and so this eager save+flush probably needs to be backported to ALL
stable trees.