In the Linux kernel, the following vulnerability has been resolved:
scsi: zfcp: Fix double free of FSF request when qdio send fails
We used to use the wrong type of integer in 'zfcp_fsf_req_send()' to cache
the FSF request ID when sending a new FSF request. This is used in case the
sending fails and we need to remove the request from our internal hash
table again (so we don't keep an invalid reference and use it when we free
the request again).
In 'zfcp_fsf_req_send()' we used to cache the ID as 'int' (signed and 32
bit wide), but the rest of the zfcp code (and the firmware specification)
handles the ID as 'unsigned long'/'u64' (unsigned and 64 bit wide [s390x
ELF ABI]). For one this has the obvious problem that when the ID grows
past 32 bit (this can happen reasonably fast) it is truncated to 32 bit
when storing it in the cache variable and so doesn't match the original ID
anymore. The second less obvious problem is that even when the original ID
has not yet grown past 32 bit, as soon as the 32nd bit is set in the
original ID (0x80000000 = 2'147'483'648) we will have a mismatch when we
cast it back to 'unsigned long'. As the cached variable is of a signed
type, the compiler will choose a sign-extending instruction to load the 32
bit variable into a 64 bit register (e.g.: 'lgf %r11,188(%r15)'). So once
we pass the cached variable into 'zfcp_reqlist_find_rm()' to remove the
request again all the leading zeros will be flipped to ones to extend the
sign and won't match the original ID anymore (this has been observed in
practice).
If we can't successfully remove the request from the hash table again after
'zfcp_qdio_send()' fails (this happens regularly when zfcp cannot notify
the adapter about new work because the adapter is already gone during
e.g. a ChpID toggle) we will end up with a double free. We unconditionally
free the request in the calling function when 'zfcp_fsf_req_send()' fails,
but because the request is still in the hash table we end up with a stale
memory reference, and once the zfcp adapter is either reset during recovery
or shutdown we end up freeing the same memory twice.
The resulting stack traces vary depending on the kernel and have no direct
correlation to the place where the bug occurs. Here are three examples that
have been seen in practice:
list_del corruption. next->prev should be 00000001b9d13800, but was 00000000dead4ead. (next=00000001bd131a00)
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:62!
monitor event: 0040 ilc:2 [#1] PREEMPT SMP
Modules linked in: ...
CPU: 9 PID: 1617 Comm: zfcperp0.0.1740 Kdump: loaded
Hardware name: ...
Krnl PSW : 0704d00180000000 00000003cbeea1f8 (__list_del_entry_valid+0x98/0x140)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: 00000000916d12f1 0000000080000000 000000000000006d 00000003cb665cd6
0000000000000001 0000000000000000 0000000000000000 00000000d28d21e8
00000000d3844000 00000380099efd28 00000001bd131a00 00000001b9d13800
00000000d3290100 0000000000000000 00000003cbeea1f4 00000380099efc70
Krnl Code: 00000003cbeea1e8: c020004f68a7 larl %r2,00000003cc8d7336
00000003cbeea1ee: c0e50027fd65 brasl %r14,00000003cc3e9cb8
#00000003cbeea1f4: af000000 mc 0,0
>00000003cbeea1f8: c02000920440 larl %r2,00000003cd12aa78
00000003cbeea1fe: c0e500289c25 brasl %r14,00000003cc3fda48
00000003cbeea204: b9040043 lgr %r4,%r3
00000003cbeea208: b9040051 lgr %r5,%r1
00000003cbeea20c: b9040032 lgr %r3,%r2
Call Trace:
[<00000003cbeea1f8>] __list_del_entry_valid+0x98/0x140
([<00000003cbeea1f4>] __list_del_entry_valid+0x94/0x140)
[<000003ff7ff502fe>] zfcp_fsf_req_dismiss_all+0xde/0x150 [zfcp]
[<000003ff7ff49cd0>] zfcp_erp_strategy_do_action+0x160/0x280 [zfcp]
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: tcm_loop: Fix possible name leak in tcm_loop_setup_hba_bus()
If device_register() fails in tcm_loop_setup_hba_bus(), the name allocated
by dev_set_name() need be freed. As comment of device_register() says, it
should use put_device() to give up the reference in the error path. So fix
this by calling put_device(), then the name can be freed in kobject_cleanup().
The 'tl_hba' will be freed in tcm_loop_release_adapter(), so it don't need
goto error label in this case.
In the Linux kernel, the following vulnerability has been resolved:
netlink: Bounds-check struct nlmsgerr creation
In preparation for FORTIFY_SOURCE doing bounds-check on memcpy(),
switch from __nlmsg_put to nlmsg_put(), and explain the bounds check
for dealing with the memcpy() across a composite flexible array struct.
Avoids this future run-time warning:
memcpy: detected field-spanning write (size 32) of single field "&errmsg->msg" at net/netlink/af_netlink.c:2447 (size 16)
In the Linux kernel, the following vulnerability has been resolved:
ceph: avoid putting the realm twice when decoding snaps fails
When decoding the snaps fails it maybe leaving the 'first_realm'
and 'realm' pointing to the same snaprealm memory. And then it'll
put it twice and could cause random use-after-free, BUG_ON, etc
issues.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Prevent bpf program recursion for raw tracepoint probes
We got report from sysbot [1] about warnings that were caused by
bpf program attached to contention_begin raw tracepoint triggering
the same tracepoint by using bpf_trace_printk helper that takes
trace_printk_lock lock.
Call Trace:
<TASK>
? trace_event_raw_event_bpf_trace_printk+0x5f/0x90
bpf_trace_printk+0x2b/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
bpf_trace_printk+0x3f/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
bpf_trace_printk+0x3f/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
bpf_trace_printk+0x3f/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
__unfreeze_partials+0x5b/0x160
...
The can be reproduced by attaching bpf program as raw tracepoint on
contention_begin tracepoint. The bpf prog calls bpf_trace_printk
helper. Then by running perf bench the spin lock code is forced to
take slow path and call contention_begin tracepoint.
Fixing this by skipping execution of the bpf program if it's
already running, Using bpf prog 'active' field, which is being
currently used by trampoline programs for the same reason.
Moving bpf_prog_inc_misses_counter to syscall.c because
trampoline.c is compiled in just for CONFIG_BPF_JIT option.
[1] https://lore.kernel.org/bpf/YxhFe3EwqchC%2FfYf@krava/T/#t
In the Linux kernel, the following vulnerability has been resolved:
net/9p: use a dedicated spinlock for trans_fd
Shamelessly copying the explanation from Tetsuo Handa's suggested
patch[1] (slightly reworded):
syzbot is reporting inconsistent lock state in p9_req_put()[2],
for p9_tag_remove() from p9_req_put() from IRQ context is using
spin_lock_irqsave() on "struct p9_client"->lock but trans_fd
(not from IRQ context) is using spin_lock().
Since the locks actually protect different things in client.c and in
trans_fd.c, just replace trans_fd.c's lock by a new one specific to the
transport (client.c's protect the idr for fid/tag allocations,
while trans_fd.c's protects its own req list and request status field
that acts as the transport's state machine)
In the Linux kernel, the following vulnerability has been resolved:
wifi: at76c50x: fix use after free access in at76_disconnect
The memory pointed to by priv is freed at the end of at76_delete_device
function (using ieee80211_free_hw). But the code then accesses the udev
field of the freed object to put the USB device. This may also lead to a
memory leak of the usb device. Fix this by using udev from interface.
In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: fix nested key length validation in the set() action
It's not safe to access nla_len(ovs_key) if the data is smaller than
the netlink header. Check that the attribute is OK first.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: Purge vif txq in ieee80211_do_stop()
After ieee80211_do_stop() SKB from vif's txq could still be processed.
Indeed another concurrent vif schedule_and_wake_txq call could cause
those packets to be dequeued (see ieee80211_handle_wake_tx_queue())
without checking the sdata current state.
Because vif.drv_priv is now cleared in this function, this could lead to
driver crash.
For example in ath12k, ahvif is store in vif.drv_priv. Thus if
ath12k_mac_op_tx() is called after ieee80211_do_stop(), ahvif->ah can be
NULL, leading the ath12k_warn(ahvif->ah,...) call in this function to
trigger the NULL deref below.
Unable to handle kernel paging request at virtual address dfffffc000000001
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
batman_adv: bat0: Interface deactivated: brbh1337
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[dfffffc000000001] address between user and kernel address ranges
Internal error: Oops: 0000000096000004 [#1] SMP
CPU: 1 UID: 0 PID: 978 Comm: lbd Not tainted 6.13.0-g633f875b8f1e #114
Hardware name: HW (DT)
pstate: 10000005 (nzcV daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : ath12k_mac_op_tx+0x6cc/0x29b8 [ath12k]
lr : ath12k_mac_op_tx+0x174/0x29b8 [ath12k]
sp : ffffffc086ace450
x29: ffffffc086ace450 x28: 0000000000000000 x27: 1ffffff810d59ca4
x26: ffffff801d05f7c0 x25: 0000000000000000 x24: 000000004000001e
x23: ffffff8009ce4926 x22: ffffff801f9c0800 x21: ffffff801d05f7f0
x20: ffffff8034a19f40 x19: 0000000000000000 x18: ffffff801f9c0958
x17: ffffff800bc0a504 x16: dfffffc000000000 x15: ffffffc086ace4f8
x14: ffffff801d05f83c x13: 0000000000000000 x12: ffffffb003a0bf03
x11: 0000000000000000 x10: ffffffb003a0bf02 x9 : ffffff8034a19f40
x8 : ffffff801d05f818 x7 : 1ffffff0069433dc x6 : ffffff8034a19ee0
x5 : ffffff801d05f7f0 x4 : 0000000000000000 x3 : 0000000000000001
x2 : 0000000000000000 x1 : dfffffc000000000 x0 : 0000000000000008
Call trace:
ath12k_mac_op_tx+0x6cc/0x29b8 [ath12k] (P)
ieee80211_handle_wake_tx_queue+0x16c/0x260
ieee80211_queue_skb+0xeec/0x1d20
ieee80211_tx+0x200/0x2c8
ieee80211_xmit+0x22c/0x338
__ieee80211_subif_start_xmit+0x7e8/0xc60
ieee80211_subif_start_xmit+0xc4/0xee0
__ieee80211_subif_start_xmit_8023.isra.0+0x854/0x17a0
ieee80211_subif_start_xmit_8023+0x124/0x488
dev_hard_start_xmit+0x160/0x5a8
__dev_queue_xmit+0x6f8/0x3120
br_dev_queue_push_xmit+0x120/0x4a8
__br_forward+0xe4/0x2b0
deliver_clone+0x5c/0xd0
br_flood+0x398/0x580
br_dev_xmit+0x454/0x9f8
dev_hard_start_xmit+0x160/0x5a8
__dev_queue_xmit+0x6f8/0x3120
ip6_finish_output2+0xc28/0x1b60
__ip6_finish_output+0x38c/0x638
ip6_output+0x1b4/0x338
ip6_local_out+0x7c/0xa8
ip6_send_skb+0x7c/0x1b0
ip6_push_pending_frames+0x94/0xd0
rawv6_sendmsg+0x1a98/0x2898
inet_sendmsg+0x94/0xe0
__sys_sendto+0x1e4/0x308
__arm64_sys_sendto+0xc4/0x140
do_el0_svc+0x110/0x280
el0_svc+0x20/0x60
el0t_64_sync_handler+0x104/0x138
el0t_64_sync+0x154/0x158
To avoid that, empty vif's txq at ieee80211_do_stop() so no packet could
be dequeued after ieee80211_do_stop() (new packets cannot be queued
because SDATA_STATE_RUNNING is cleared at this point).