A vulnerability in the web-based management interface of Cisco Application Policy Infrastructure Controller (APIC) and Cisco Cloud Network Controller, formerly Cisco Cloud APIC, could allow an unauthenticated, remote attacker to conduct a cross-site request forgery (CSRF) attack on an affected system. This vulnerability is due to insufficient CSRF protections for the web-based management interface on an affected system. An attacker could exploit this vulnerability by persuading a user of the interface to click a malicious link. A successful exploit could allow the attacker to perform arbitrary actions with the privilege level of the affected user. If the affected user has administrative privileges, these actions could include modifying the system configuration and creating new privileged accounts.
A vulnerability in the CLI console login authentication of Cisco Nexus 9300-FX3 Series Fabric Extender (FEX) when used in UCS Fabric Interconnect deployments could allow an unauthenticated attacker with physical access to bypass authentication. This vulnerability is due to the improper implementation of the password validation function. An attacker could exploit this vulnerability by logging in to the console port on an affected device. A successful exploit could allow the attacker to bypass authentication and execute a limited set of commands local to the FEX, which could cause a device reboot and denial of service (DoS) condition.
A vulnerability in the CLI of Cisco Firepower 4100 Series, Cisco Firepower 9300 Security Appliances, and Cisco UCS 6200, 6300, 6400, and 6500 Series Fabric Interconnects could allow an authenticated, local attacker to inject unauthorized commands. This vulnerability is due to insufficient input validation of commands supplied by the user. An attacker could exploit this vulnerability by authenticating to a device and submitting crafted input to the affected command. A successful exploit could allow the attacker to execute unauthorized commands within the CLI. An attacker with Administrator privileges could also execute arbitrary commands on the underlying operating system of Cisco UCS 6400 and 6500 Series Fabric Interconnects with root-level privileges.
A vulnerability in the backup configuration feature of Cisco UCS Manager Software and in the configuration export feature of Cisco FXOS Software could allow an unauthenticated attacker with access to a backup file to decrypt sensitive information stored in the full state and configuration backup files. This vulnerability is due to a weakness in the encryption method used for the backup function. An attacker could exploit this vulnerability by leveraging a static key used for the backup configuration feature. A successful exploit could allow the attacker to decrypt sensitive information that is stored in full state and configuration backup files, such as local user credentials, authentication server passwords, Simple Network Management Protocol (SNMP) community names, and other credentials.
A vulnerability in the CLI of Cisco NX-OS Software could allow an authenticated, local attacker to execute arbitrary commands on the underlying operating system of an affected device. This vulnerability is due to insufficient validation of arguments that are passed to specific CLI commands. An attacker could exploit this vulnerability by including crafted input as the argument of an affected command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with the privileges of the currently logged-in user.
A vulnerability in the Link Layer Discovery Protocol (LLDP) feature for Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) Mode could allow an unauthenticated, adjacent attacker to cause a memory leak, which could result in an unexpected reload of the device. This vulnerability is due to incorrect error checking when parsing ingress LLDP packets. An attacker could exploit this vulnerability by sending a steady stream of crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause a memory leak, which could result in a denial of service (DoS) condition when the device unexpectedly reloads. Note: This vulnerability cannot be exploited by transit traffic through the device. The crafted LLDP packet must be targeted to a directly connected interface, and the attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). In addition, the attack surface for this vulnerability can be reduced by disabling LLDP on interfaces where it is not required.
node-jose is a JavaScript implementation of the JSON Object Signing and Encryption (JOSE) for web browsers and node.js-based servers. Prior to version 2.2.0, when using the non-default "fallback" crypto back-end, ECC operations in `node-jose` can trigger a Denial-of-Service (DoS) condition, due to a possible infinite loop in an internal calculation. For some ECC operations, this condition is triggered randomly; for others, it can be triggered by malicious input. The issue has been patched in version 2.2.0. Since this issue is only present in the "fallback" crypto implementation, it can be avoided by ensuring that either WebCrypto or the Node `crypto` module is available in the JS environment where `node-jose` is being run.
A vulnerability in the Cisco IOx application hosting environment could allow an authenticated, remote attacker to execute arbitrary commands as root on the underlying host operating system. This vulnerability is due to incomplete sanitization of parameters that are passed in for activation of an application. An attacker could exploit this vulnerability by deploying and activating an application in the Cisco IOx application hosting environment with a crafted activation payload file. A successful exploit could allow the attacker to execute arbitrary commands as root on the underlying host operating system.
A vulnerability in the Link Layer Discovery Protocol (LLDP) feature of Cisco Webex Room Phone and Cisco Webex Share devices could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device.
This vulnerability is due to insufficient resource allocation. An attacker could exploit this vulnerability by sending crafted LLDP traffic to an affected device. A successful exploit could allow the attacker to exhaust the memory resources of the affected device, resulting in a crash of the LLDP process. If the affected device is configured to support LLDP only, this could cause an interruption to inbound and outbound calling. By default, these devices are configured to support both Cisco Discovery Protocol and LLDP. To recover operational state, the affected device needs a manual restart.
A vulnerability in the URL filtering mechanism of Cisco AsyncOS Software for Cisco Email Security Appliance (ESA) could allow an unauthenticated, remote attacker to bypass the URL reputation filters on an affected device.
This vulnerability is due to improper processing of URLs. An attacker could exploit this vulnerability by crafting a URL in a particular way. A successful exploit could allow the attacker to bypass the URL reputation filters that are configured for an affected device, which could allow malicious URLs to pass through the device.