Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.19.267  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: jfs: fix invalid free of JFS_IP(ipimap)->i_imap in diUnmount syzbot found an invalid-free in diUnmount: BUG: KASAN: double-free in slab_free mm/slub.c:3661 [inline] BUG: KASAN: double-free in __kmem_cache_free+0x71/0x110 mm/slub.c:3674 Free of addr ffff88806f410000 by task syz-executor131/3632 CPU: 0 PID: 3632 Comm: syz-executor131 Not tainted 6.1.0-rc7-syzkaller-00012-gca57f02295f1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:284 print_report+0x107/0x1f0 mm/kasan/report.c:395 kasan_report_invalid_free+0xac/0xd0 mm/kasan/report.c:460 ____kasan_slab_free+0xfb/0x120 kasan_slab_free include/linux/kasan.h:177 [inline] slab_free_hook mm/slub.c:1724 [inline] slab_free_freelist_hook+0x12e/0x1a0 mm/slub.c:1750 slab_free mm/slub.c:3661 [inline] __kmem_cache_free+0x71/0x110 mm/slub.c:3674 diUnmount+0xef/0x100 fs/jfs/jfs_imap.c:195 jfs_umount+0x108/0x370 fs/jfs/jfs_umount.c:63 jfs_put_super+0x86/0x190 fs/jfs/super.c:194 generic_shutdown_super+0x130/0x310 fs/super.c:492 kill_block_super+0x79/0xd0 fs/super.c:1428 deactivate_locked_super+0xa7/0xf0 fs/super.c:332 cleanup_mnt+0x494/0x520 fs/namespace.c:1186 task_work_run+0x243/0x300 kernel/task_work.c:179 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x664/0x2070 kernel/exit.c:820 do_group_exit+0x1fd/0x2b0 kernel/exit.c:950 __do_sys_exit_group kernel/exit.c:961 [inline] __se_sys_exit_group kernel/exit.c:959 [inline] __x64_sys_exit_group+0x3b/0x40 kernel/exit.c:959 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] JFS_IP(ipimap)->i_imap is not setting to NULL after free in diUnmount. If jfs_remount() free JFS_IP(ipimap)->i_imap but then failed at diMount(). JFS_IP(ipimap)->i_imap will be freed once again. Fix this problem by setting JFS_IP(ipimap)->i_imap to NULL after free.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: dm integrity: call kmem_cache_destroy() in dm_integrity_init() error path Otherwise the journal_io_cache will leak if dm_register_target() fails.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: drm: amd: display: Fix memory leakage This commit fixes memory leakage in dc_construct_ctx() function.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: ALSA: ymfpci: Fix BUG_ON in probe function The snd_dma_buffer.bytes field now contains the aligned size, which this snd_BUG_ON() did not account for, resulting in the following: [ 9.625915] ------------[ cut here ]------------ [ 9.633440] WARNING: CPU: 0 PID: 126 at sound/pci/ymfpci/ymfpci_main.c:2168 snd_ymfpci_create+0x681/0x698 [snd_ymfpci] [ 9.648926] Modules linked in: snd_ymfpci(+) snd_intel_dspcfg kvm(+) snd_intel_sdw_acpi snd_ac97_codec snd_mpu401_uart snd_opl3_lib irqbypass snd_hda_codec gameport snd_rawmidi crct10dif_pclmul crc32_pclmul cfg80211 snd_hda_core polyval_clmulni polyval_generic gf128mul snd_seq_device ghash_clmulni_intel snd_hwdep ac97_bus sha512_ssse3 rfkill snd_pcm aesni_intel tg3 snd_timer crypto_simd snd mxm_wmi libphy cryptd k10temp fam15h_power pcspkr soundcore sp5100_tco wmi acpi_cpufreq mac_hid dm_multipath sg loop fuse dm_mod bpf_preload ip_tables x_tables ext4 crc32c_generic crc16 mbcache jbd2 sr_mod cdrom ata_generic pata_acpi firewire_ohci crc32c_intel firewire_core xhci_pci crc_itu_t pata_via xhci_pci_renesas floppy [ 9.711849] CPU: 0 PID: 126 Comm: kworker/0:2 Not tainted 6.1.21-1-lts #1 08d2e5ece03136efa7c6aeea9a9c40916b1bd8da [ 9.722200] Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./990FX Extreme4, BIOS P2.70 06/05/2014 [ 9.732204] Workqueue: events work_for_cpu_fn [ 9.736580] RIP: 0010:snd_ymfpci_create+0x681/0x698 [snd_ymfpci] [ 9.742594] Code: 8c c0 4c 89 e2 48 89 df 48 c7 c6 92 c6 8c c0 e8 15 d0 e9 ff 48 83 c4 08 44 89 e8 5b 5d 41 5c 41 5d 41 5e 41 5f e9 d3 7a 33 e3 <0f> 0b e9 cb fd ff ff 41 bd fb ff ff ff eb db 41 bd f4 ff ff ff eb [ 9.761358] RSP: 0018:ffffab64804e7da0 EFLAGS: 00010287 [ 9.766594] RAX: ffff8fa2df06c400 RBX: ffff8fa3073a8000 RCX: ffff8fa303fbc4a8 [ 9.773734] RDX: ffff8fa2df06d000 RSI: 0000000000000010 RDI: 0000000000000020 [ 9.780876] RBP: ffff8fa300b5d0d0 R08: ffff8fa3073a8e50 R09: 00000000df06bf00 [ 9.788018] R10: ffff8fa2df06bf00 R11: 00000000df068200 R12: ffff8fa3073a8918 [ 9.795159] R13: 0000000000000000 R14: 0000000000000080 R15: ffff8fa2df068200 [ 9.802317] FS: 0000000000000000(0000) GS:ffff8fa9fec00000(0000) knlGS:0000000000000000 [ 9.810414] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 9.816158] CR2: 000055febaf66500 CR3: 0000000101a2e000 CR4: 00000000000406f0 [ 9.823301] Call Trace: [ 9.825747] <TASK> [ 9.827889] snd_card_ymfpci_probe+0x194/0x950 [snd_ymfpci b78a5fe64b5663a6390a909c67808567e3e73615] [ 9.837030] ? finish_task_switch.isra.0+0x90/0x2d0 [ 9.841918] local_pci_probe+0x45/0x80 [ 9.845680] work_for_cpu_fn+0x1a/0x30 [ 9.849431] process_one_work+0x1c7/0x380 [ 9.853464] worker_thread+0x1af/0x390 [ 9.857225] ? rescuer_thread+0x3b0/0x3b0 [ 9.861254] kthread+0xde/0x110 [ 9.864414] ? kthread_complete_and_exit+0x20/0x20 [ 9.869210] ret_from_fork+0x22/0x30 [ 9.872792] </TASK> [ 9.874985] ---[ end trace 0000000000000000 ]---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread() The finalization of nilfs_segctor_thread() can race with nilfs_segctor_kill_thread() which terminates that thread, potentially causing a use-after-free BUG as KASAN detected. At the end of nilfs_segctor_thread(), it assigns NULL to "sc_task" member of "struct nilfs_sc_info" to indicate the thread has finished, and then notifies nilfs_segctor_kill_thread() of this using waitqueue "sc_wait_task" on the struct nilfs_sc_info. However, here, immediately after the NULL assignment to "sc_task", it is possible that nilfs_segctor_kill_thread() will detect it and return to continue the deallocation, freeing the nilfs_sc_info structure before the thread does the notification. This fixes the issue by protecting the NULL assignment to "sc_task" and its notification, with spinlock "sc_state_lock" of the struct nilfs_sc_info. Since nilfs_segctor_kill_thread() does a final check to see if "sc_task" is NULL with "sc_state_lock" locked, this can eliminate the race.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: ipmi_si: fix a memleak in try_smi_init() Kmemleak reported the following leak info in try_smi_init(): unreferenced object 0xffff00018ecf9400 (size 1024): comm "modprobe", pid 2707763, jiffies 4300851415 (age 773.308s) backtrace: [<000000004ca5b312>] __kmalloc+0x4b8/0x7b0 [<00000000953b1072>] try_smi_init+0x148/0x5dc [ipmi_si] [<000000006460d325>] 0xffff800081b10148 [<0000000039206ea5>] do_one_initcall+0x64/0x2a4 [<00000000601399ce>] do_init_module+0x50/0x300 [<000000003c12ba3c>] load_module+0x7a8/0x9e0 [<00000000c246fffe>] __se_sys_init_module+0x104/0x180 [<00000000eea99093>] __arm64_sys_init_module+0x24/0x30 [<0000000021b1ef87>] el0_svc_common.constprop.0+0x94/0x250 [<0000000070f4f8b7>] do_el0_svc+0x48/0xe0 [<000000005a05337f>] el0_svc+0x24/0x3c [<000000005eb248d6>] el0_sync_handler+0x160/0x164 [<0000000030a59039>] el0_sync+0x160/0x180 The problem was that when an error occurred before handlers registration and after allocating `new_smi->si_sm`, the variable wouldn't be freed in the error handling afterwards since `shutdown_smi()` hadn't been registered yet. Fix it by adding a `kfree()` in the error handling path in `try_smi_init()`.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: hwmon: (coretemp) Simplify platform device handling Coretemp's platform driver is unconventional. All the real work is done globally by the initcall and CPU hotplug notifiers, while the "driver" effectively just wraps an allocation and the registration of the hwmon interface in a long-winded round-trip through the driver core. The whole logic of dynamically creating and destroying platform devices to bring the interfaces up and down is error prone, since it assumes platform_device_add() will synchronously bind the driver and set drvdata before it returns, thus results in a NULL dereference if drivers_autoprobe is turned off for the platform bus. Furthermore, the unusual approach of doing that from within a CPU hotplug notifier, already commented in the code that it deadlocks suspend, also causes lockdep issues for other drivers or subsystems which may want to legitimately register a CPU hotplug notifier from a platform bus notifier. All of these issues can be solved by ripping this unusual behaviour out completely, simply tying the platform devices to the lifetime of the module itself, and directly managing the hwmon interfaces from the hotplug notifiers. There is a slight user-visible change in that /sys/bus/platform/drivers/coretemp will no longer appear, and /sys/devices/platform/coretemp.n will remain present if package n is hotplugged off, but hwmon users should really only be looking for the presence of the hwmon interfaces, whose behaviour remains unchanged.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: drivers: base: Free devm resources when unregistering a device In the current code, devres_release_all() only gets called if the device has a bus and has been probed. This leads to issues when using bus-less or driver-less devices where the device might never get freed if a managed resource holds a reference to the device. This is happening in the DRM framework for example. We should thus call devres_release_all() in the device_del() function to make sure that the device-managed actions are properly executed when the device is unregistered, even if it has neither a bus nor a driver. This is effectively the same change than commit 2f8d16a996da ("devres: release resources on device_del()") that got reverted by commit a525a3ddeaca ("driver core: free devres in device_release") over memory leaks concerns. This patch effectively combines the two commits mentioned above to release the resources both on device_del() and device_release() and get the best of both worlds.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: spi: qup: Don't skip cleanup in remove's error path Returning early in a platform driver's remove callback is wrong. In this case the dma resources are not released in the error path. this is never retried later and so this is a permanent leak. To fix this, only skip hardware disabling if waking the device fails.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: media: dvb-core: Fix double free in dvb_register_device() In function dvb_register_device() -> dvb_register_media_device() -> dvb_create_media_entity(), dvb->entity is allocated and initialized. If the initialization fails, it frees the dvb->entity, and return an error code. The caller takes the error code and handles the error by calling dvb_media_device_free(), which unregisters the entity and frees the field again if it is not NULL. As dvb->entity may not NULLed in dvb_create_media_entity() when the allocation of dvbdev->pad fails, a double free may occur. This may also cause an Use After free in media_device_unregister_entity(). Fix this by storing NULL to dvb->entity when it is freed.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04


Contact Us

Shodan ® - All rights reserved