In the Linux kernel, the following vulnerability has been resolved:
i40e: remove read access to debugfs files
The 'command' and 'netdev_ops' debugfs files are a legacy debugging
interface supported by the i40e driver since its early days by commit
02e9c290814c ("i40e: debugfs interface").
Both of these debugfs files provide a read handler which is mostly useless,
and which is implemented with questionable logic. They both use a static
256 byte buffer which is initialized to the empty string. In the case of
the 'command' file this buffer is literally never used and simply wastes
space. In the case of the 'netdev_ops' file, the last command written is
saved here.
On read, the files contents are presented as the name of the device
followed by a colon and then the contents of their respective static
buffer. For 'command' this will always be "<device>: ". For 'netdev_ops',
this will be "<device>: <last command written>". But note the buffer is
shared between all devices operated by this module. At best, it is mostly
meaningless information, and at worse it could be accessed simultaneously
as there doesn't appear to be any locking mechanism.
We have also recently received multiple reports for both read functions
about their use of snprintf and potential overflow that could result in
reading arbitrary kernel memory. For the 'command' file, this is definitely
impossible, since the static buffer is always zero and never written to.
For the 'netdev_ops' file, it does appear to be possible, if the user
carefully crafts the command input, it will be copied into the buffer,
which could be large enough to cause snprintf to truncate, which then
causes the copy_to_user to read beyond the length of the buffer allocated
by kzalloc.
A minimal fix would be to replace snprintf() with scnprintf() which would
cap the return to the number of bytes written, preventing an overflow. A
more involved fix would be to drop the mostly useless static buffers,
saving 512 bytes and modifying the read functions to stop needing those as
input.
Instead, lets just completely drop the read access to these files. These
are debug interfaces exposed as part of debugfs, and I don't believe that
dropping read access will break any script, as the provided output is
pretty useless. You can find the netdev name through other more standard
interfaces, and the 'netdev_ops' interface can easily result in garbage if
you issue simultaneous writes to multiple devices at once.
In order to properly remove the i40e_dbg_netdev_ops_buf, we need to
refactor its write function to avoid using the static buffer. Instead, use
the same logic as the i40e_dbg_command_write, with an allocated buffer.
Update the code to use this instead of the static buffer, and ensure we
free the buffer on exit. This fixes simultaneous writes to 'netdev_ops' on
multiple devices, and allows us to remove the now unused static buffer
along with removing the read access.
In the Linux kernel, the following vulnerability has been resolved:
mm/slub: avoid accessing metadata when pointer is invalid in object_err()
object_err() reports details of an object for further debugging, such as
the freelist pointer, redzone, etc. However, if the pointer is invalid,
attempting to access object metadata can lead to a crash since it does
not point to a valid object.
One known path to the crash is when alloc_consistency_checks()
determines the pointer to the allocated object is invalid because of a
freelist corruption, and calls object_err() to report it. The debug code
should report and handle the corruption gracefully and not crash in the
process.
In case the pointer is NULL or check_valid_pointer() returns false for
the pointer, only print the pointer value and skip accessing metadata.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: Initialize the chan_stats array to zero
The adapter->chan_stats[] array is initialized in
mwifiex_init_channel_scan_gap() with vmalloc(), which doesn't zero out
memory. The array is filled in mwifiex_update_chan_statistics()
and then the user can query the data in mwifiex_cfg80211_dump_survey().
There are two potential issues here. What if the user calls
mwifiex_cfg80211_dump_survey() before the data has been filled in.
Also the mwifiex_update_chan_statistics() function doesn't necessarily
initialize the whole array. Since the array was not initialized at
the start that could result in an information leak.
Also this array is pretty small. It's a maximum of 900 bytes so it's
more appropriate to use kcalloc() instead vmalloc().
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix recursive semaphore deadlock in fiemap call
syzbot detected a OCFS2 hang due to a recursive semaphore on a
FS_IOC_FIEMAP of the extent list on a specially crafted mmap file.
context_switch kernel/sched/core.c:5357 [inline]
__schedule+0x1798/0x4cc0 kernel/sched/core.c:6961
__schedule_loop kernel/sched/core.c:7043 [inline]
schedule+0x165/0x360 kernel/sched/core.c:7058
schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:7115
rwsem_down_write_slowpath+0x872/0xfe0 kernel/locking/rwsem.c:1185
__down_write_common kernel/locking/rwsem.c:1317 [inline]
__down_write kernel/locking/rwsem.c:1326 [inline]
down_write+0x1ab/0x1f0 kernel/locking/rwsem.c:1591
ocfs2_page_mkwrite+0x2ff/0xc40 fs/ocfs2/mmap.c:142
do_page_mkwrite+0x14d/0x310 mm/memory.c:3361
wp_page_shared mm/memory.c:3762 [inline]
do_wp_page+0x268d/0x5800 mm/memory.c:3981
handle_pte_fault mm/memory.c:6068 [inline]
__handle_mm_fault+0x1033/0x5440 mm/memory.c:6195
handle_mm_fault+0x40a/0x8e0 mm/memory.c:6364
do_user_addr_fault+0x764/0x1390 arch/x86/mm/fault.c:1387
handle_page_fault arch/x86/mm/fault.c:1476 [inline]
exc_page_fault+0x76/0xf0 arch/x86/mm/fault.c:1532
asm_exc_page_fault+0x26/0x30 arch/x86/include/asm/idtentry.h:623
RIP: 0010:copy_user_generic arch/x86/include/asm/uaccess_64.h:126 [inline]
RIP: 0010:raw_copy_to_user arch/x86/include/asm/uaccess_64.h:147 [inline]
RIP: 0010:_inline_copy_to_user include/linux/uaccess.h:197 [inline]
RIP: 0010:_copy_to_user+0x85/0xb0 lib/usercopy.c:26
Code: e8 00 bc f7 fc 4d 39 fc 72 3d 4d 39 ec 77 38 e8 91 b9 f7 fc 4c 89
f7 89 de e8 47 25 5b fd 0f 01 cb 4c 89 ff 48 89 d9 4c 89 f6 <f3> a4 0f
1f 00 48 89 cb 0f 01 ca 48 89 d8 5b 41 5c 41 5d 41 5e 41
RSP: 0018:ffffc9000403f950 EFLAGS: 00050256
RAX: ffffffff84c7f101 RBX: 0000000000000038 RCX: 0000000000000038
RDX: 0000000000000000 RSI: ffffc9000403f9e0 RDI: 0000200000000060
RBP: ffffc9000403fa90 R08: ffffc9000403fa17 R09: 1ffff92000807f42
R10: dffffc0000000000 R11: fffff52000807f43 R12: 0000200000000098
R13: 00007ffffffff000 R14: ffffc9000403f9e0 R15: 0000200000000060
copy_to_user include/linux/uaccess.h:225 [inline]
fiemap_fill_next_extent+0x1c0/0x390 fs/ioctl.c:145
ocfs2_fiemap+0x888/0xc90 fs/ocfs2/extent_map.c:806
ioctl_fiemap fs/ioctl.c:220 [inline]
do_vfs_ioctl+0x1173/0x1430 fs/ioctl.c:532
__do_sys_ioctl fs/ioctl.c:596 [inline]
__se_sys_ioctl+0x82/0x170 fs/ioctl.c:584
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f5f13850fd9
RSP: 002b:00007ffe3b3518b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000200000000000 RCX: 00007f5f13850fd9
RDX: 0000200000000040 RSI: 00000000c020660b RDI: 0000000000000004
RBP: 6165627472616568 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffe3b3518f0
R13: 00007ffe3b351b18 R14: 431bde82d7b634db R15: 00007f5f1389a03b
ocfs2_fiemap() takes a read lock of the ip_alloc_sem semaphore (since
v2.6.22-527-g7307de80510a) and calls fiemap_fill_next_extent() to read the
extent list of this running mmap executable. The user supplied buffer to
hold the fiemap information page faults calling ocfs2_page_mkwrite() which
will take a write lock (since v2.6.27-38-g00dc417fa3e7) of the same
semaphore. This recursive semaphore will hold filesystem locks and causes
a hang of the fileystem.
The ip_alloc_sem protects the inode extent list and size. Release the
read semphore before calling fiemap_fill_next_extent() in ocfs2_fiemap()
and ocfs2_fiemap_inline(). This does an unnecessary semaphore lock/unlock
on the last extent but simplifies the error path.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: edma: Fix memory allocation size for queue_priority_map
Fix a critical memory allocation bug in edma_setup_from_hw() where
queue_priority_map was allocated with insufficient memory. The code
declared queue_priority_map as s8 (*)[2] (pointer to array of 2 s8),
but allocated memory using sizeof(s8) instead of the correct size.
This caused out-of-bounds memory writes when accessing:
queue_priority_map[i][0] = i;
queue_priority_map[i][1] = i;
The bug manifested as kernel crashes with "Oops - undefined instruction"
on ARM platforms (BeagleBoard-X15) during EDMA driver probe, as the
memory corruption triggered kernel hardening features on Clang.
Change the allocation to use sizeof(*queue_priority_map) which
automatically gets the correct size for the 2D array structure.
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix use-after-free when rescheduling brcmf_btcoex_info work
The brcmf_btcoex_detach() only shuts down the btcoex timer, if the
flag timer_on is false. However, the brcmf_btcoex_timerfunc(), which
runs as timer handler, sets timer_on to false. This creates critical
race conditions:
1.If brcmf_btcoex_detach() is called while brcmf_btcoex_timerfunc()
is executing, it may observe timer_on as false and skip the call to
timer_shutdown_sync().
2.The brcmf_btcoex_timerfunc() may then reschedule the brcmf_btcoex_info
worker after the cancel_work_sync() has been executed, resulting in
use-after-free bugs.
The use-after-free bugs occur in two distinct scenarios, depending on
the timing of when the brcmf_btcoex_info struct is freed relative to
the execution of its worker thread.
Scenario 1: Freed before the worker is scheduled
The brcmf_btcoex_info is deallocated before the worker is scheduled.
A race condition can occur when schedule_work(&bt_local->work) is
called after the target memory has been freed. The sequence of events
is detailed below:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... |
kfree(cfg->btcoex); // FREE |
| schedule_work(&bt_local->work); // USE
Scenario 2: Freed after the worker is scheduled
The brcmf_btcoex_info is freed after the worker has been scheduled
but before or during its execution. In this case, statements within
the brcmf_btcoex_handler() — such as the container_of macro and
subsequent dereferences of the brcmf_btcoex_info object will cause
a use-after-free access. The following timeline illustrates this
scenario:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... | schedule_work(); // Reschedule
|
kfree(cfg->btcoex); // FREE | brcmf_btcoex_handler() // Worker
/* | btci = container_of(....); // USE
The kfree() above could | ...
also occur at any point | btci-> // USE
during the worker's execution|
*/ |
To resolve the race conditions, drop the conditional check and call
timer_shutdown_sync() directly. It can deactivate the timer reliably,
regardless of its current state. Once stopped, the timer_on state is
then set to false.
In the Linux kernel, the following vulnerability has been resolved:
fs: writeback: fix use-after-free in __mark_inode_dirty()
An use-after-free issue occurred when __mark_inode_dirty() get the
bdi_writeback that was in the progress of switching.
CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1
......
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __mark_inode_dirty+0x124/0x418
lr : __mark_inode_dirty+0x118/0x418
sp : ffffffc08c9dbbc0
........
Call trace:
__mark_inode_dirty+0x124/0x418
generic_update_time+0x4c/0x60
file_modified+0xcc/0xd0
ext4_buffered_write_iter+0x58/0x124
ext4_file_write_iter+0x54/0x704
vfs_write+0x1c0/0x308
ksys_write+0x74/0x10c
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x40/0xe4
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x194/0x198
Root cause is:
systemd-random-seed kworker
----------------------------------------------------------------------
___mark_inode_dirty inode_switch_wbs_work_fn
spin_lock(&inode->i_lock);
inode_attach_wb
locked_inode_to_wb_and_lock_list
get inode->i_wb
spin_unlock(&inode->i_lock);
spin_lock(&wb->list_lock)
spin_lock(&inode->i_lock)
inode_io_list_move_locked
spin_unlock(&wb->list_lock)
spin_unlock(&inode->i_lock)
spin_lock(&old_wb->list_lock)
inode_do_switch_wbs
spin_lock(&inode->i_lock)
inode->i_wb = new_wb
spin_unlock(&inode->i_lock)
spin_unlock(&old_wb->list_lock)
wb_put_many(old_wb, nr_switched)
cgwb_release
old wb released
wb_wakeup_delayed() accesses wb,
then trigger the use-after-free
issue
Fix this race condition by holding inode spinlock until
wb_wakeup_delayed() finished.
In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix potential invalid access when MAC list is empty
list_first_entry() never returns NULL - if the list is empty, it still
returns a pointer to an invalid object, leading to potential invalid
memory access when dereferenced.
Fix this by using list_first_entry_or_null instead of list_first_entry.
In the Linux kernel, the following vulnerability has been resolved:
pcmcia: Fix a NULL pointer dereference in __iodyn_find_io_region()
In __iodyn_find_io_region(), pcmcia_make_resource() is assigned to
res and used in pci_bus_alloc_resource(). There is a dereference of res
in pci_bus_alloc_resource(), which could lead to a NULL pointer
dereference on failure of pcmcia_make_resource().
Fix this bug by adding a check of res.
In the Linux kernel, the following vulnerability has been resolved:
ppp: fix memory leak in pad_compress_skb
If alloc_skb() fails in pad_compress_skb(), it returns NULL without
releasing the old skb. The caller does:
skb = pad_compress_skb(ppp, skb);
if (!skb)
goto drop;
drop:
kfree_skb(skb);
When pad_compress_skb() returns NULL, the reference to the old skb is
lost and kfree_skb(skb) ends up doing nothing, leading to a memory leak.
Align pad_compress_skb() semantics with realloc(): only free the old
skb if allocation and compression succeed. At the call site, use the
new_skb variable so the original skb is not lost when pad_compress_skb()
fails.