In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Fix isochronous Ring Underrun/Overrun event handling
The TRB pointer of these events points at enqueue at the time of error
occurrence on xHCI 1.1+ HCs or it's NULL on older ones. By the time we
are handling the event, a new TD may be queued at this ring position.
I can trigger this race by rising interrupt moderation to increase IRQ
handling delay. Similar delay may occur naturally due to system load.
If this ever happens after a Missed Service Error, missed TDs will be
skipped and the new TD processed as if it matched the event. It could
be given back prematurely, risking data loss or buffer UAF by the xHC.
Don't complete TDs on xrun events and don't warn if queued TDs don't
match the event's TRB pointer, which can be NULL or a link/no-op TRB.
Don't warn if there are no queued TDs at all.
Now that it's safe, also handle xrun events if the skip flag is clear.
This ensures completion of any TD stuck in 'error mid TD' state right
before the xrun event, which could happen if a driver submits a finite
number of URBs to a buggy HC and then an error occurs on the last TD.
In the Linux kernel, the following vulnerability has been resolved:
s390/sclp: Add check for get_zeroed_page()
Add check for the return value of get_zeroed_page() in
sclp_console_init() to prevent null pointer dereference.
Furthermore, to solve the memory leak caused by the loop
allocation, add a free helper to do the free job.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix deadlock between rcu_tasks_trace and event_mutex.
Fix the following deadlock:
CPU A
_free_event()
perf_kprobe_destroy()
mutex_lock(&event_mutex)
perf_trace_event_unreg()
synchronize_rcu_tasks_trace()
There are several paths where _free_event() grabs event_mutex
and calls sync_rcu_tasks_trace. Above is one such case.
CPU B
bpf_prog_test_run_syscall()
rcu_read_lock_trace()
bpf_prog_run_pin_on_cpu()
bpf_prog_load()
bpf_tracing_func_proto()
trace_set_clr_event()
mutex_lock(&event_mutex)
Delegate trace_set_clr_event() to workqueue to avoid
such lock dependency.
In the Linux kernel, the following vulnerability has been resolved:
iommu: Clear iommu-dma ops on cleanup
If iommu_device_register() encounters an error, it can end up tearing
down already-configured groups and default domains, however this
currently still leaves devices hooked up to iommu-dma (and even
historically the behaviour in this area was at best inconsistent across
architectures/drivers...) Although in the case that an IOMMU is present
whose driver has failed to probe, users cannot necessarily expect DMA to
work anyway, it's still arguable that we should do our best to put
things back as if the IOMMU driver was never there at all, and certainly
the potential for crashing in iommu-dma itself is undesirable. Make sure
we clean up the dev->dma_iommu flag along with everything else.
In the Linux kernel, the following vulnerability has been resolved:
HID: pidff: Fix null pointer dereference in pidff_find_fields
This function triggered a null pointer dereference if used to search for
a report that isn't implemented on the device. This happened both for
optional and required reports alike.
The same logic was applied to pidff_find_special_field and although
pidff_init_fields should return an error earlier if one of the required
reports is missing, future modifications could change this logic and
resurface this possible null pointer dereference again.
LKML bug report:
https://lore.kernel.org/all/CAL-gK7f5=R0nrrQdPtaZZr1fd-cdAMbDMuZ_NLA8vM0SX+nGSw@mail.gmail.com
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: handle amdgpu_cgs_create_device() errors in amd_powerplay_create()
Add error handling to propagate amdgpu_cgs_create_device() failures
to the caller. When amdgpu_cgs_create_device() fails, release hwmgr
and return -ENOMEM to prevent null pointer dereference.
[v1]->[v2]: Change error code from -EINVAL to -ENOMEM. Free hwmgr.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: harden block_group::bg_list against list_del() races
As far as I can tell, these calls of list_del_init() on bg_list cannot
run concurrently with btrfs_mark_bg_unused() or btrfs_mark_bg_to_reclaim(),
as they are in transaction error paths and situations where the block
group is readonly.
However, if there is any chance at all of racing with mark_bg_unused(),
or a different future user of bg_list, better to be safe than sorry.
Otherwise we risk the following interleaving (bg_list refcount in parens)
T1 (some random op) T2 (btrfs_mark_bg_unused)
!list_empty(&bg->bg_list); (1)
list_del_init(&bg->bg_list); (1)
list_move_tail (1)
btrfs_put_block_group (0)
btrfs_delete_unused_bgs
bg = list_first_entry
list_del_init(&bg->bg_list);
btrfs_put_block_group(bg); (-1)
Ultimately, this results in a broken ref count that hits zero one deref
early and the real final deref underflows the refcount, resulting in a WARNING.
In the Linux kernel, the following vulnerability has been resolved:
scsi: st: Fix array overflow in st_setup()
Change the array size to follow parms size instead of a fixed value.
In the Linux kernel, the following vulnerability has been resolved:
fs/jfs: Prevent integer overflow in AG size calculation
The JFS filesystem calculates allocation group (AG) size using 1 <<
l2agsize in dbExtendFS(). When l2agsize exceeds 31 (possible with >2TB
aggregates on 32-bit systems), this 32-bit shift operation causes undefined
behavior and improper AG sizing.
On 32-bit architectures:
- Left-shifting 1 by 32+ bits results in 0 due to integer overflow
- This creates invalid AG sizes (0 or garbage values) in
sbi->bmap->db_agsize
- Subsequent block allocations would reference invalid AG structures
- Could lead to:
- Filesystem corruption during extend operations
- Kernel crashes due to invalid memory accesses
- Security vulnerabilities via malformed on-disk structures
Fix by casting to s64 before shifting:
bmp->db_agsize = (s64)1 << l2agsize;
This ensures 64-bit arithmetic even on 32-bit architectures. The cast
matches the data type of db_agsize (s64) and follows similar patterns in
JFS block calculation code.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Tear down vGIC on failed vCPU creation
If kvm_arch_vcpu_create() fails to share the vCPU page with the
hypervisor, we propagate the error back to the ioctl but leave the
vGIC vCPU data initialised. Note only does this leak the corresponding
memory when the vCPU is destroyed but it can also lead to use-after-free
if the redistributor device handling tries to walk into the vCPU.
Add the missing cleanup to kvm_arch_vcpu_create(), ensuring that the
vGIC vCPU structures are destroyed on error.