In the Linux kernel, the following vulnerability has been resolved:
btrfs: abort transaction on unexpected eb generation at btrfs_copy_root()
If we find an unexpected generation for the extent buffer we are cloning
at btrfs_copy_root(), we just WARN_ON() and don't error out and abort the
transaction, meaning we allow to persist metadata with an unexpected
generation. Instead of warning only, abort the transaction and return
-EUCLEAN.
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: Remove WARN_ON for device endpoint command timeouts
This commit addresses a rarely observed endpoint command timeout
which causes kernel panic due to warn when 'panic_on_warn' is enabled
and unnecessary call trace prints when 'panic_on_warn' is disabled.
It is seen during fast software-controlled connect/disconnect testcases.
The following is one such endpoint command timeout that we observed:
1. Connect
=======
->dwc3_thread_interrupt
->dwc3_ep0_interrupt
->configfs_composite_setup
->composite_setup
->usb_ep_queue
->dwc3_gadget_ep0_queue
->__dwc3_gadget_ep0_queue
->__dwc3_ep0_do_control_data
->dwc3_send_gadget_ep_cmd
2. Disconnect
==========
->dwc3_thread_interrupt
->dwc3_gadget_disconnect_interrupt
->dwc3_ep0_reset_state
->dwc3_ep0_end_control_data
->dwc3_send_gadget_ep_cmd
In the issue scenario, in Exynos platforms, we observed that control
transfers for the previous connect have not yet been completed and end
transfer command sent as a part of the disconnect sequence and
processing of USB_ENDPOINT_HALT feature request from the host timeout.
This maybe an expected scenario since the controller is processing EP
commands sent as a part of the previous connect. It maybe better to
remove WARN_ON in all places where device endpoint commands are sent to
avoid unnecessary kernel panic due to warn.
In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix the setting of capabilities when automounting a new filesystem
Capabilities cannot be inherited when we cross into a new filesystem.
They need to be reset to the minimal defaults, and then probed for
again.
In the Linux kernel, the following vulnerability has been resolved:
ARM: tegra: Use I/O memcpy to write to IRAM
Kasan crashes the kernel trying to check boundaries when using the
normal memcpy.
In the Linux kernel, the following vulnerability has been resolved:
block: avoid possible overflow for chunk_sectors check in blk_stack_limits()
In blk_stack_limits(), we check that the t->chunk_sectors value is a
multiple of the t->physical_block_size value.
However, by finding the chunk_sectors value in bytes, we may overflow
the unsigned int which holds chunk_sectors, so change the check to be
based on sectors.
1. A cookie is set using the `secure` keyword for `https://target`
2. curl is redirected to or otherwise made to speak with `http://target` (same
hostname, but using clear text HTTP) using the same cookie set
3. The same cookie name is set - but with just a slash as path (`path=\"/\",`).
Since this site is not secure, the cookie *should* just be ignored.
4. A bug in the path comparison logic makes curl read outside a heap buffer
boundary
The bug either causes a crash or it potentially makes the comparison come to
the wrong conclusion and lets the clear-text site override the contents of the
secure cookie, contrary to expectations and depending on the memory contents
immediately following the single-byte allocation that holds the path.
The presumed and correct behavior would be to plainly ignore the second set of
the cookie since it was already set as secure on a secure host so overriding
it on an insecure host should not be okay.
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: exynos: Fix programming of HCI_UTRL_NEXUS_TYPE
On Google gs101, the number of UTP transfer request slots (nutrs) is 32,
and in this case the driver ends up programming the UTRL_NEXUS_TYPE
incorrectly as 0.
This is because the left hand side of the shift is 1, which is of type
int, i.e. 31 bits wide. Shifting by more than that width results in
undefined behaviour.
Fix this by switching to the BIT() macro, which applies correct type
casting as required. This ensures the correct value is written to
UTRL_NEXUS_TYPE (0xffffffff on gs101), and it also fixes a UBSAN shift
warning:
UBSAN: shift-out-of-bounds in drivers/ufs/host/ufs-exynos.c:1113:21
shift exponent 32 is too large for 32-bit type 'int'
For consistency, apply the same change to the nutmrs / UTMRL_NEXUS_TYPE
write.
In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: Detect events pointing to unexpected TREs
When a remote device sends a completion event to the host, it contains a
pointer to the consumed TRE. The host uses this pointer to process all of
the TREs between it and the host's local copy of the ring's read pointer.
This works when processing completion for chained transactions, but can
lead to nasty results if the device sends an event for a single-element
transaction with a read pointer that is multiple elements ahead of the
host's read pointer.
For instance, if the host accesses an event ring while the device is
updating it, the pointer inside of the event might still point to an old
TRE. If the host uses the channel's xfer_cb() to directly free the buffer
pointed to by the TRE, the buffer will be double-freed.
This behavior was observed on an ep that used upstream EP stack without
'commit 6f18d174b73d ("bus: mhi: ep: Update read pointer only after buffer
is written")'. Where the device updated the events ring pointer before
updating the event contents, so it left a window where the host was able to
access the stale data the event pointed to, before the device had the
chance to update them. The usual pattern was that the host received an
event pointing to a TRE that is not immediately after the last processed
one, so it got treated as if it was a chained transaction, processing all
of the TREs in between the two read pointers.
This commit aims to harden the host by ensuring transactions where the
event points to a TRE that isn't local_rp + 1 are chained.
[mani: added stable tag and reworded commit message]
In the Linux kernel, the following vulnerability has been resolved:
x86/vmscape: Add conditional IBPB mitigation
VMSCAPE is a vulnerability that exploits insufficient branch predictor
isolation between a guest and a userspace hypervisor (like QEMU). Existing
mitigations already protect kernel/KVM from a malicious guest. Userspace
can additionally be protected by flushing the branch predictors after a
VMexit.
Since it is the userspace that consumes the poisoned branch predictors,
conditionally issue an IBPB after a VMexit and before returning to
userspace. Workloads that frequently switch between hypervisor and
userspace will incur the most overhead from the new IBPB.
This new IBPB is not integrated with the existing IBPB sites. For
instance, a task can use the existing speculation control prctl() to
get an IBPB at context switch time. With this implementation, the
IBPB is doubled up: one at context switch and another before running
userspace.
The intent is to integrate and optimize these cases post-embargo.
[ dhansen: elaborate on suboptimal IBPB solution ]
In the Linux kernel, the following vulnerability has been resolved:
jbd2: prevent softlockup in jbd2_log_do_checkpoint()
Both jbd2_log_do_checkpoint() and jbd2_journal_shrink_checkpoint_list()
periodically release j_list_lock after processing a batch of buffers to
avoid long hold times on the j_list_lock. However, since both functions
contend for j_list_lock, the combined time spent waiting and processing
can be significant.
jbd2_journal_shrink_checkpoint_list() explicitly calls cond_resched() when
need_resched() is true to avoid softlockups during prolonged operations.
But jbd2_log_do_checkpoint() only exits its loop when need_resched() is
true, relying on potentially sleeping functions like __flush_batch() or
wait_on_buffer() to trigger rescheduling. If those functions do not sleep,
the kernel may hit a softlockup.
watchdog: BUG: soft lockup - CPU#3 stuck for 156s! [kworker/u129:2:373]
CPU: 3 PID: 373 Comm: kworker/u129:2 Kdump: loaded Not tainted 6.6.0+ #10
Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.27 06/13/2017
Workqueue: writeback wb_workfn (flush-7:2)
pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : native_queued_spin_lock_slowpath+0x358/0x418
lr : jbd2_log_do_checkpoint+0x31c/0x438 [jbd2]
Call trace:
native_queued_spin_lock_slowpath+0x358/0x418
jbd2_log_do_checkpoint+0x31c/0x438 [jbd2]
__jbd2_log_wait_for_space+0xfc/0x2f8 [jbd2]
add_transaction_credits+0x3bc/0x418 [jbd2]
start_this_handle+0xf8/0x560 [jbd2]
jbd2__journal_start+0x118/0x228 [jbd2]
__ext4_journal_start_sb+0x110/0x188 [ext4]
ext4_do_writepages+0x3dc/0x740 [ext4]
ext4_writepages+0xa4/0x190 [ext4]
do_writepages+0x94/0x228
__writeback_single_inode+0x48/0x318
writeback_sb_inodes+0x204/0x590
__writeback_inodes_wb+0x54/0xf8
wb_writeback+0x2cc/0x3d8
wb_do_writeback+0x2e0/0x2f8
wb_workfn+0x80/0x2a8
process_one_work+0x178/0x3e8
worker_thread+0x234/0x3b8
kthread+0xf0/0x108
ret_from_fork+0x10/0x20
So explicitly call cond_resched() in jbd2_log_do_checkpoint() to avoid
softlockup.